

PREPARE FOR THE NEW ENERGY FUTURE**

Accentuate the Positive: Climate Responsive Design

Developed in cooperation with: aia seattle

Sponsored By:

RAIC | IRAC Architecture Canada

The Global Warming Pie....

These values look at <u>Secondary Energy Use by Sector in Canada</u> (2006) (energy used by the final consumer i.e. operating energy)

Emissions and their Sources

U.S. GHG Emissions Flow Chart

Opportunities to Work With and Harvest Climate

Roughly....

The Sun = Free Heat, Light, Cooling & Ventilation

The Wind = Free Ventilation & Cooling

Rain & Snow = Free Water & Cooling

There is lots that can and must be done at the OUTSET of a project with respect to the Climate, Building Siting and Orientation that can HELP to reduce energy.

If not done you will spend a lot of time and energy working to correct these bad decisions.

Good decisions at the start can be built upon

Bad decisions at the start need to be corrected

Low Hanging Fruit

McKinsey Report identifies some basic good building moves that can save energy

Energy vs Greenhouse Gas Emissions

In BUILDINGS, for the sake of argument

ENERGY CONSUMPTION = GHG EMISSIONS

BUILDING ENERGY IS COMPRISED OF

EMBODIED ENERGY + OPERATING ENERGY

Carbon Reduction: The Tier Approach

Image: Norbert Lechner, "Heating, Cooling, Lighting"

The Importance of Understanding Building Physics

A detailed understanding of the physics is not essential BUT! It is important to understand limitations

There is no free energy

Some forms of energy are weak Stack effect for natural ventilation

Begin with Passive Strategies for Climate Control to Reduce Energy Requirements

Climate as the Starting Point for a Climate Responsive Design

Designing to the Comfort Zone vs. Comfort Point:

Passive Bio-climatic Design: COMFORT ZONE

IDEALLY comfort expectations may have to be reassessed to allow for the wider "zone" that is characteristic of buildings that are not exclusively controlled via mechanical systems.

Creation of new "**buffer spaces**" to make a hierarchy of comfort levels within buildings.

Require **higher occupant involvement** to adjust the building to modify the temperature and air flow.

Accentuate the Positive: Climate Responsive Design

North American Bio-climatic Design:

Design must first acknowledge regional, local and microclimate impacts on the building and site.

COLD

TEMPERATE

HOT-ARID

HOT-HUMID

11. Regional climate zones of the North American continent.

Global Bio-climatic Design:

Design must first acknowledge regional, local and microclimate impacts on the building and site.

The climate regions of Canada

Even within Canada, there exist variations in climate, enough to require very different envelope design practices and regulations. This mostly concerns insulation and water penetration, as well as humidity concerns.

Heating and Cooling Degree Days

This map shows the annual sum of heating degree days (an indicator of building heating needs). Data for period 1941 to 1970.

Determine if the climate is heating or cooling dominated ...this will set out your primary strategy.

The Controversial "Cover" of Greensource Magazine

A "sustainable" Chicago residential skyscraper – going for LEED

Buildings that are purporting to be "sustainable" routinely ignore key issues of detailing to achieve energy efficiency – in this building, continuous thermal bridges at every slab edge and 90% wall glazing. Not acceptable in a cold climate.

Chicago Climate Data

TEMPERATURES & DEW POINTS FAHRENHEIT/CELSIUS

PRECIPITATION INCHES/MILLIMETERS

1 Upper Columbus Drive 2 Lower Columbus Drive 3 Stair to Harbor Park 4 Roof garden 5 Parking 6 Living/dining room 7 Den 8 Kitchen 9 Bedroom 10 Master bedroom 11 Great room 12 Dining room

Heating degree days 6,479 F Cooling degree days 782F

Solving the thermal bridge

The "classic" bad balcony detail results in heat loss as well as moisture and mold problems.

Meteorology - It all starts here...

In the built environment, meteorology is the start of all design ...

Structural design / response

Pedestrian comfort

Air quality / plume dispersion

Energy demand / heating and cooling loads

etc.

Can't we always use meteorological measurements?

- Meteorology is a 4-D problem (varies in space and time).
- Weather stations provide only a 1-D answer (time series at a single point in space).
- Surface-based measurements (e.g., airport weather stations) are influenced more strongly by the underlying surface than large-scale phenomena.
- Measurements at an airport do not necessarily reflect conditions in the surrounding urban area.
- Local factors that influence meteorology are always changing, as are global weather patterns.

Climate Consultant

http://www.energy-design-tools.aud.ucla.edu/

Climate Consultant 5 is a free tool available from the above address.

You will need to download .epw climate data for your city from this website

http://apps1.eere.energy.gov/buildings/energyplus/cfm/weather_data.cfm

Choose Comfort Model

- Buildings are designed for their use, occupancy or occupants
- Normally it is the people that need to be comfortable in doing their tasks, not the building
- Some uses can accommodate a much higher range of temperatures than others
- Decide if using a fully automated heating AND cooling system
- Can the building **eliminate an A/C system** due to climate?
- Can the building **use passive solar to heat** the building?
- Can the building **use passive ventilation** to cool the building?
- Can the building **take advantage of daylight** to light the building?

Choose Comfort Model

ASHRAE Handbook of Comfort Fundamentals 2005

For people dressed in normal winter clothes,

- Effective Temperatures of 68°F (20°C) to 74°F (23.3°C) (measured at 50% relative humidity), which means the temperatures decrease slightly as humidity rises.
- The upper humidity limit is 64°F (17.8°C) Wet Bulb and a lower Dew Point of 36F (2.2°C).
- If people are dressed in light weight summer clothes then this comfort zone shifts 5°F (2.8°C) warmer.

ASHRAE Standard 55-2004 Using Predicted Mean Vote Model

- Thermal comfort is based on dry bulb temperature, clothing level (clo), metabolic activity (met), air velocity, humidity, and mean radiant temperature.
- Indoors it is assumed that mean radiant temperature is close to dry bulb temperature.
- The zone in which most people are comfortable is calculated using the PMV model.
- In **residential settings** people adapt clothing to match the season and feel comfortable in higher air velocities and so have wider comfort range than in buildings with centralized HVAC systems.

Adaptive Comfort Model in ASHRAE Standard 55-2004

- In naturally ventilated spaces where occupants can open and close windows, their thermal response will depend in part on the outdoor climate, and may have a wider comfort range than in buildings with centralized HVAC systems.
- This model assumes occupants adapt their clothing to thermal conditions, and are sedentary.
- <u>There must be no mechanical Cooling System</u>, so this method does not apply if a Mechanical Heating System is in operation.
- The ability to completely eliminate a Mechanical Cooling System has great potential for Carbon savings, but comfort must be maintained passively.

EPW Weather Data for 1000s of Locations

<u>ی</u>		Clima	te Consu	Itant 5.4	(Build 5	i, Mar 11,	2013)					-	×
ile Criteria Charts Help													
WEATHER DATA SUMMARY			LOCATION: Latitude/Longitude: Data Source:			Toronto Int'I, ON, CAN 43.67° North, 79.63° West, Time Zone from Greenwich -5 WYEC2-B-04714 716240 WMO Station Number, Elevation 173 m							
MONTHLY MEANS	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	1
Global Horiz Radiation (Avg Hourly)	161	221	268	329	384	404	405	376	333	239	136	122	Wh/sq.m
Direct Normal Radiation (Avg Hourly)	230	265	270	307	324	323	361	316	347	249	130	172	Wh/sq.m
Diffuse Radiation (Avg Hourly)	85	112	127	143	172	185	164	178	141	126	86	67	Wh/sq.m
Global Horiz Radiation (Max Hourly)	474	651	875	931	974	1003	<mark>980</mark>	907	827	655	516	417	Wh/sq.m
Direct Normal Radiation (Max Hourly)	879	947	1022	1028	959	948	927	932	931	870	861	872	Wh/sq.m
Diffuse Radiation (Max Hourly)	238	368	439	431	594	545	458	431	385	328	250	195	Wh/sq.m
Global Horiz Radiation (Avg Daily Total)	1468	2262	3181	4347	5599	6138	6035	5163	4099	2568	1300	1072	Wh/sq.m
Direct Normal Radiation (Avg Daily Total)	2097	2703	3207	4041	4728	49 <u>1</u> 8	5384	4336	4251	2663	1249	1519	Wh/sq.m
Diffuse Radiation (Avg Daily Total)	783	1151	1506	1900	2513	<mark>2818</mark>	2441	2453	1745	1358	818	591	Wh/sq.m
Global Horiz Illumination (Avg Hourly)	<mark>18043</mark>	24998	30402	37172	43543	<mark>458</mark> 39	45796	<mark>42702</mark>	37681	27169	15572	13688	lux
Direct Normal Illumination (Avg Hourly)	22576	27019	28334	32402	34319	34073	37965	33408	36306	25747	13364	17190	lux
Dry Bulb Temperature (Avg Monthly)	-5	-5	0	5	11	17	20	19	14	8	3	-2	degrees C
Dew Point Temperature (Avg Monthly)	-8	-9	-4	0	4	11	14	13	10	4	0	-5	degrees C
Relative Humidity (Avg Monthly)	78	75	74	70	62	68	70	70	75	77	83	79	percent
Wind Direction (Monthly Mode)	250	270	270	90	340	0	330	340	330	250	250	250	degrees
Wind Speed (Avg Monthly)	4	5	5	4	4	3	3	2	3	4	4	5	m/s
Ground Temperature (Avg Monthly of 3 Depths)	0	-1	0	0	5	10	14	15	15	12	7	3	degrees C

Setting the Project Criteria

Climate Consultant 5.4 (Build 5, Mar 11, 2013) – 🗆 🗙							
LOCATI CRITERIA: (Metric Units) Latitude/ Data Sou	ION: Toronto Int'I, ON, CAN /Longitude: 43.67° North, 79.63° West, Time Zone from Greenwich -5 urce: WYEC2-B-04714 716240 WMO Station Number, Elevation 173 m						
ASHRAE Handbook of Fundamentals Comfort Model,	, 2005 (select Help for definitions)						
1. COMFORT: (using ASHRAE Handbook 2005 Model) 20.0 Comfort Low - Min. Confort Effective Temp @ 50% RH (ET* C) 23.3 Comfort High - Max. Comfort Effective Temp @ 50% RH (ET* C) 17.8 Max. Wet Bulb Temperature (°C) 2.2 Min. Dew Point Temperature (°C) 2.8 Summer Comfort Zone shifted by this Temperature (ET* C) 1.0 Winter Clothing Indoors (1.0 Clo=long pants,sweater) 0.5 Summer Clothing Indoors (.5 Clo=shorts,light top) 1.1 Activity Level Daytime (1.1 Met=sitting,reading) 2. SUN SHADING ZONE: (Defaults to Comfort Low) 20.0 20.0 Min. Dry Bulb Temperature Difference above Comfort High (°C) 3.15.5 Min. Global Horiz. Radiation when Need for Shading Begins (Wh/si 3. HIGH THERMAL MASS ZONE: 8.3 8.3 Max. Dry Bulb Temperature Difference above Comfort High (°C) 2.8 Min. Nighttime Temperature Difference below Comfort High (°C) 2.8 Min. Nighttime Temperature Difference below Comfort High (°C) 2.8 Min. Nighttime Temperature Difference below Comfort High (°C) 2.8 Min. Nighttime Temperature Difference below Comfort High (°C) 2.8 Min. Nighttime Temperature Difference below Comfort High (°C) 2.8	7. NATURAL VENTILATION COOLING ZONE: 2.0 Terrain Category to modify Wind Speed (2=suburban) 0.1 Min. Indoor Velocity to Effect Indoor Comfort (m/s) 1.5 Max. Comfortable Velocity (per ASHRAE Std. 55) (m/s) 3.7 Max. Perceived Temperature Reduction (°C) 90.0 Max. Relative Humidity (%) 22.8 Max. Wet Bulb Temperature (°C) 8. FAN-FORCED VENTILATION COOLING ZONE: 0.8 0.8 Max. Mechanical Ventilation Velocity (m/s) 3.0 Max. Perceived Temperature Reduction (°C) (Min Vel, Max RH, Max WB match Natural Ventilation) 9. INTERNAL HEAT GAIN ZONE: 12.8 Balance Point Temperature Above Which Building Runs Free (°C) 10. PASSIVE SOLAR DIRECT GAIN LOW MASS ZONE: 157.7 Min. South Window Radiation for 5.56°C Temperature Rise (Wh/sq.m) 3.0 Thermal Time Lag for Low Mass Buildings (hours) 11. PASSIVE SOLAR DIRECT GAIN HIGH MASS ZONE: 157.7 Min. South Window Radiation for 5.56°C Temperature Rise (Wh/sq.m) 12.0 Thermal Time Lag for High Mass Buildings (hours) 12.0 Thermal Time Lag for High Mass Buildings (hours) 12.0 Thermal Time Lag for High Mass Buildings (hours) 11.1						
	Restore Default Values Recalculate Back Next						

Psychrometric Chart

The chart helps to identify climate based strategies to achieve comfort.

Climate Data for Toronto

Climate Data for Toronto

Climate Data for Toronto

Temperature Range for Toronto

Toronto Solar Radiation Range

Ground Temperature for Toronto

Sun Shading Chart

Wind Speed

January Wind Wheel/Rose for Toronto

July Wind Wheel/Rose for Toronto

September Wind Wheel/Rose for Toronto

Source of EPW Data

Story of TMY data gathering:

- Means Typical Meteorological Year
- Collection of typical months of various years to constitute a complete year of data
- Is getting out of date as does not reflect recent climate changes
- Most accurate for solar, temperature and wind
- Not very accurate for precipitation

Sometimes the Met Data is Lacking

Burj Khalifa – 820 m tall Wind measured at ground level is not good enough

Wind Profile

Sometimes the Met Data Is Not Valid

Sometimes the Met Data is Just Wrong

Sometimes the Data Filtering Affects Parameters

So what can we do? ... Adjust the met Data

Statistical

Dependent upon measurement data availability / quality and includes: multi-site and auto-correlations; Weibull models; monte-carlo simulations; etc.

Diagnostic

Dependent upon measurement data and involves 2-D or 3-D interpolation with limited physics where each hour is treated independently.

Prognostic

4-D weather simulation models that simulate the physics of atmospheric motions from first principals.

Prognostic modeling – nested grid paradigm

Prognostic modeling – nested grid paradigm

Study of UAE

- Client needed higher fidelity of meteorological data
- Prognostic model used to replicate local conditions.
- Modeling also used to assess planned land use changes and climate change.

MM5v3 @ 4km Grid_Spacing 41.0 93 37.0 33.0 29.0 25.0 21.0 17.0 13.0 9.0 Temp C 105 February 11,2006 9:00:00 15.0Temp C Min= 20.2 at (88,84), Max= 33.2 at (34,29)

Wind & Temperature Fields

Current

East China Sea - Shanghai

The windrose shows 340 358 0% 7.0% where winds come 6.0% from 5.0% 4.0% Wind is complex. It 3.0% 2.0% changes by: 1.0% Season 0.00 Time of day **Specific location**

Winds in Shanghai – all seasons

Winds in Shanghai – <mark>Summer</mark>

Winds in Shanghai –Winter

Southwest Monsoon Northern Hemisphere Summer

Northeast Monsoon Northern Hemisphere Winter

Doha Misconceptions

Wind Rose for Doha All Seasons – Winds Blowing From (1992 – 2002)

Wind Rose for Doha Summer Afternoons – Winds Blowing From (1992 – 2002)

VERNACULAR STRATEGIES

CLIMATE AS THE STARTING POINT FOR RETHINKING ARCHITECTURAL DESIGN

Bio-climatic Design: COLD VERNACULAR

- Local materials
- Heat retention
- Vestibule
- Stratification

Bio-climatic Design: COLD RULES

Where **winter** is the dominant season and concerns for conserving heat predominate all other concerns. Heating degree days greatly exceed cooling degree days.

RULES:

- First **INSULATE**
- exceed CODE requirements (DOUBLE??)
- minimize infiltration (build tight to reduce air changes)
- Then INSOLATE

- ORIENT AND SITE THE BUILDING PROPERLY FOR THE SUN

- maximize south facing windows for easier control

- fenestrate for **DIRECT GAIN**

- apply **THERMAL MASS** inside the building envelope to store the FREE SOLAR HEAT
- create a sheltered MICROCLIMATE to make it LESS cold

YMCA Environmental Learning Centre, Paradise Lake, Ontario

Cold Climate Passive Strategies

Characterized by long cold heating season with little or no need for summer cooling. Heating degree days greatly exceed cooling degree days.

Primary Passive strategies:

- Airlock entry
- Coniferous wind breaks
- High level of insulation
 Super-insulated roof

- Internal mass
- Passive solar heat
- Sheltered location
 Roof supports snow

Cold Climate Passive Strategies

Courtesy Baker-Laporte & Collette

Bio-climatic Design: HOT-ARID RULES

Where very high summer temperatures with great fluctuation predominate with dry conditions throughout the year. Cooling degrees days greatly exceed heating degree days.

RULES:

- SOLAR AVOIDANCE: keep DIRECT
- SOLAR GAIN out of the building
- avoid daytime ventilation
- promote nighttime flushing with cool evening air
- achieve daylighting by reflectance and use of LIGHT non-heat absorbing colours
- create a cooler MICROCLIMATE by using light
- / lightweight materials
- respect the DIURNAL CYCLE
- use heavy mass for walls and DO NOT INSULATE

Traditional House in Egypt

Bio-climatic: Hot-Arid Passive Strategies

High diurnal temperature swings, hot days, low humidity, **Cooling** degrees days greatly exceed heating degree days.

Primary Passive strategies:

- Earth coupled floor
- Earth bermed
- Mass walls & floors
- Cross ventilation
- Internal courtyard
- Evaporative Cooling

- Light color
- Reflective roof
- Tree shading
- Oriented to breezes
- Insulated roof
- Roof collects water

Bio-climatic: Hot-Arid Passive Strategies

Courtesy Baker-Laporte & Collett

Where warm to hot stable conditions predominate with high humidity throughout the year. Cooling degrees days greatly exceed heating degree days.

RULES:

- **SOLAR AVOIDANCE** : large roofs with overhangs that shade walls and to allow windows open at all times

- PROMOTE VENTILATION

- USE LIGHTWEIGHT MATERIALS that do not hold heat and that will not promote condensation and dampness (mold/mildew)

- eliminate basements and concrete
- use STACK EFFECT to ventilate through high spaces
- use of COURTYARDS and semi-enclosed outside spaces
- use WATER FEATURES for cooling

House in Seaside, Florida

Bio-climatic Design: Hot-Humid Strategies

Low diurnal temperature swings, long cooling season, high humidity. Cooling degrees days greatly exceed heating degree days.

Passive strategies:

- Raised floor
- Cross ventilation
- Vertical ventilation
- Shading porches
- Light color
- Light materials

- Tree shading
- Oriented to breezes
- Insulated roof
- Reflective roof
 - Roof sheds water
Bio-climatic Design: Hot-Humid Strategies

Bio-climatic Design: TEMPERATE

The summers are hot and humid, and the winters are cold. In much of the region the topography is generally flat, allowing cold winter winds to come in form the northwest and cool summer breezes to flow in from the southwest. **The four seasons are almost equally long.**

RULES:

- BALANCE strategies between COLD and HOT-HUMID
- maximize flexibility in order to be able to modify the envelope for varying climatic conditions
- understand the natural benefits of SOLAR ANGLES that shade during the warm months and allow for heating during the cool months

IslandWood Residence, Seattle, WA

Bio-climatic Design: Temperate Strategies

courtesy Baker-Laporte and Collett

Begin with Passive Strategies for Climate Control to Reduce Energy Requirements

PREPARE FOR THE NEW ENERGY FUTURE***

Climate Engineering: A little about your trip to RWDI

Developed in cooperation with: **aia**^{seattle}

Sponsored By:

RAIC | IRAC Architecture Canada

Wind tunnel model

Windtunnel Measurements

Urban situation easy to check

Models for the Leadenhall Building that include Swiss Re, previously modeled + site condition at base of buildings

Model Shop

Specially constructed models

World class facility

Water Flume

Water Flume

Water Flume

Seismic Testing

For earthquake prone areas, large scale models are put on a shake table to simulate and test structures.

