

Arch 375: Architecturally Exposed Structural Steel

Terri Meyer Boake University of Waterloo School of Architecture

Vladimir Shukhov

- originated in the work of Vladimir Shukhov circa 1896
- creation of tall
 hyperbolic paraboloid
 structures to support
 water towers
- structure had no need of a core for lateral load resistance

Shukhov Towers

Evolution: Diagonal Bracing

- Diagonals reappeared as expressions of bracing
- They provided lateral support for wind and seismic loads
- Columns carried the gravity loads
- Core was the primary means of lateral resistance

Evolution: Eliminating vertical columns

Note: The core will be framed in steel or cast in concrete as a function of local practices and construction sequencing/erection priorities. A <u>pure</u> steel diagrid tower does not require a core for lateral resistance.

History: Early Diagrids

CURTIS AND DAVIS w/
LESLIE ROBERTSON ENGINEER
UNITED STEELWORKERS BUILDING 1963
Pittsburgh, Pennsylvania

- Exterior steel frame
- Aluminum clad
- Incorporated glazing system

Prefabrication

- introduction of prefabrication of the exterior framing elements
- color coding of the frames according to their load carrying capacity
- quicker connections on site

Images: Leslie E. Robertson Associates

History: Early Diagrids

I.M. PEI w/ LESLIE ROBERTSON ENG. BANK OF CHINA 1989 Hong Kong

Diagonal geometry permitted unusual massing of the tower.

History: Early Diagrids

I.M. PEI w/ LESLIE ROBERTSON ENG. BANK OF CHINA 1989 Hong Kong

Diagonals were constructed of steel that was embedded in large masses of concrete at the major nodes.

Early Expressions of Diagonal Bracing

Johnson/Burgee w/
LESLIE ROBERTSON ENG.
Puerta de Europa Towers 1996
Madrid, Spain

- Highly expressive use of diagonal bracing
- 15° lean
- Steel frame with reinforced concrete core

Collaboration is critical for success

* New code issues! Diagrids not in current seismic codes

ARCHITECT ENGINEER FABRICATOR

Images: ARUP

Adapted well to non rectilinear geometries.

FOSTER+PARTNERS w/ARUP LONDON GLA 2003 London, England

- diagrid not a complete system
- used to support the front glazed face
- combined with sloped columns to address "egg" shape
- structural system designed around the idea of the central void

FOSTER+PARTNERS w/ARUP LONDON GLA 2003 London, England

Photo: ARUP

Steel as the exclusive structural system for exterior, floors and core.

FOSTER+PARTNERS w/ARUP SWISS RE 2004 London, England

- Used for a rectilinear building
- Expression of the diagrid on the detailing of the corners
- Exclusive steel structure for core, exterior diagrid support and floor system

FOSTER+PARTNERS w/
WSP GROUP
HEARST MAGAZINE TOWER 2006
New York, New York

Potential benefits

- Increased stability due to triangulation
- diagrids combine the gravity and lateral load bearing systems, thereby providing more efficiency
- provision of alternate load paths in the event of a structural failure
- some buildings noting a 20% reduction in the amount of structural steel required

FOSTER+PARTNERS w/ ZEIDLER
HALCROW YOLLES
BOW ENCANA 2012
Calgary, Alberta

Potential benefits

- reduced use of structural materials which translates into "carbon" or environmental savings
- reduced weight of the superstructure translates into reduced load on the foundations
- ability to provide structural support for a myriad of shapes
- MOST APPLICATIONS ARE ARCHITECTURALLY DRIVEN

ROGERS STIRK HARBOUR +
PARTNERS
w/ ARUP
THE LEADENHALL BUILDING 2013
London, England

Optimization

KYOUNG SUN MOON YALE UNIVERSITY OPTIMIZATION WORK 2007 TO PRESENT

Optimization + Modularity

KYOUNG SUN MOON OPTIMIZATION WORK

A tower is a tall cantilever. It experiences moment towards the base and shear towards the top.

Primary areas of concern for design

- Modules and modularity
- Node and member design
- Core design
- Façade design

- How frequent are the nodes?
- How long are the diagonals?
- What sort of spacing angle is appropriate?
- What is the spacing between the points of connection with the floor edge beam that creates the triangulation between the diagrid members?

Additional module considerations

- geometry of the building
- occurrence of eccentric loading
- structural efficiency
- floor-to-floor heights
- requirements for fenestration pattern and window sizes
- selection of AESS or concealed steel structure

Terms

Note the unsupported condition of the corner. This becomes a major concern when designing the planimetric shape of the tower.

Bracing of the members?

Small Modules: 2 to 4 storeys

Midrange Modules: 6 to 8 storeys

Large Modules: 10+ Storeys

Leadenhall – 14 storeys

Guangzhou IFC – 12 or 16 storeys

- 400mSupertalltower
- Taper towards top
- Rounded triangular plan
- Large scale for large building

WILKINSON + EYRE w/ARUP GUANGZHOU IFC 2010 Guangzhou, China

- Concealed steel
- Gently curved shape
- floor edge beams brace diagrid along its length

MZ ARCHITECTS w/ARUP ALDAR HQ 2012 Abu Dhabi, UAE

- exposed steel
- double façade
- sloped face
- module height linked to trapezoidal shape/height of building

ROGERS STIRK HARBOUR+PARTNERS w/ ARUP LEADENHALL 2013 London, England

RMJM ARCHITECTS SELF ENGINEERED CAPITAL GATE 2012 Abu Dhabi, UAE

- Eccentric geometry
- 18° backwards
 lean
- Offset concrete core
- Large diagonals on close spacing for structural reasons

Image: Miroslav Munka

Module in atrium matches module for exterior support system.

RMJM ARCHITECTS SELF ENGINEERED CAPITAL GATE 2012 Abu Dhabi, UAE

- 555m Supertall tower
- Taper towards top
- Rounded plan at the top
- Square plan at the bottom
- steepness of the diagrid shifts from moment resisting (steep) at the base to shear resisting (shallow) at the top

Image: SOM

SOM Lotte Super Tower (visionary) Seoul, Korea

- plan changes from square at the bottom to round at the top
- module height changes from 10 storeys at the bottom to 2 storeys at the top
- round open lattice at the top good for vortex shedding
- angle is steeper at bottom and shallower at top

SOM
Lotte Super Tower
(visionary)
Seoul, Korea

- 4 storey module
- Unbraced diagonals due to double façade
- Alternate floors hung from floor above
- Low angle with floor

SOM
Diamond Lantern
Beijing, China

Shape choices for members

Wide flange sections and standard shapes – North America and Australia

Shape choices for members

exposure

Wide flange sections and bolting – worker safety

Completely custom sections fabricated from plate to attain sharp corners for

Node design criteria

- Concealed or AESS project?
- Shape of incoming members
- Site bolting or welding
- Independent element or integrated with member
- Usually fabricated in shop
- How many incoming members to accommodate?

- Concealed steel
- Fixed node
- No shoring
- Shop fabricated
- Bolted on site

FOSTER+PARTNERS w/ WSP GROUP HEARST TOWER 2006

Node

Concealed steel but tight detailing to keep a slim profile for cladding.

Images: WSP Group

FOSTER+PARTNERS w/ WSP GROUP HEARST TOWER 2006

- AESS (intumescent coating)
- Concrete filled tubes
- No shoring
- Shop fabricated
- Welded on site (temp bolts)

WILKINSON + EYRE w/ARUP
GUANGZHOU IFC 2010

- Concealed
- Fixed node
- No shoring
- Shop fabricated
- Bolted on site

FOSTER+PARTNERS w/ARUP SWISS RE 2004

Images: ARUP

- AESS
- Tensioned connection
- Adjusted during construction to correct lean of building
- Node types vary per location
- Bolted on site

ROGERS STIRK HARBOUR+PARTNERS w/ ARUP LEADENHALL 2013

Images: Arup

ROGERS STIRK
HARBOUR+PARTNERS w/ ARUP
LEADENHALL 2013

Node design – renderings and actual

Images: Jeff Schofield

Node attached to member

Image: ArcelorMittal

C. BALMOND w/ ARUP ORBIT TOWER 2012

The node and member may be erected as a unit for reasons of constructability.

Image: Arup

IBA ARCHITECTS w/ ARUP CANTON TOWER 2010

Core Design

- A true/simple diagrid tower does not NEED a core for structural stability
- Diagrid structure can have all of the gravity and lateral loads assumed by the perimeter framing
- Lower rise towers can choose not to have a "structural core"
- Skyscrapers will need a "structural core" to assist the perimeter diagrid
- Choice between steel and concrete

Core design

Steel core types:

- Centered core
- Offset core
- Core outside of building

Concrete core types:

- Centered core
- Narrow plan
- Highly eccentric loading
- Supertall towers

Other issues:

- Regional preferences for materials
- Seismic performance
- Excessive wind loads

Centered steel core

- Swiss Re the most "pure" diagrid tower as core is NOT used for lateral stability
- Plan allowed to open up towards the top due to steel only taking gravity loads
- No seismic issues

Offset steel core

- Core offset due to preferred exposure on 3 sides
- Added some steel bracing but diagrid doing most of the structural work
- NYC is in a seismic zone, so additional stability issues

External core

Image: Rogers Stirk Harbour + Partners

- Strength of diagrid/megaframe allows for core to be external
- Core houses elevators and W/C
- Provides no lateral stability
- K bracing at rear bay adds stability to the megaframe

Centered concrete core

Image: William Hare

AEDAS w/ ARUP
AL BAHAR TOWERS 2012

Concrete core for a narrow plan

mage: William Ha

Concrete core for eccentric load

- 18º lean
- Core pre-cambered 350mm off vertical to compensate
- Core pretensioned on one side to balance load

Images: Jeff Schofield

Concrete core for a Supertall tower

Image: Wilkinson Eyre Architects

- Core required at bottom 2/3 of tower
- Core split from floors 69 103 to allow for atrium at center
- Diagrid allows for "something special" to happen at top of tower
- Suits new tendency to mix hotel and office occupancies

Constructability

GENERAL ISSUES:

- Eliminate shoring
- Quick (bolted) site connections
- Staging area
- Highly skilled labour

LIBESKIND w/
ARUP CANADA/HALSALL
ROM CRYSTAL 2006
Toronto, Canada

ROM SPECIFIC ISSUES:

- Geometrical challenges due to lack of uniformity
- Gravity working against erection (eccentric pieces)
- Abundance of unique situations

Constructability

ISSUES:

- eccentric geometry
- no two nodes alike (822 unique)
- all welded welding access
- tensioned core to offset lean

RMJM ARCHITECTS CAPITAL GATE 2011 Abu Dhabi, UAE

Constructability

- Geometry of building
- Expression of diagrid?
 - diagrid emphasized in curtain wall design
 - curtain wall in front of structure
- Use of space
 - open floor area behind
 - partitions abutting glazing
- Budget for curtain wall
 - size of units
 - type of glass (# of panes)
 - double façade
- Shading strategies
- Operable units?
- Rectilinear vs. triangulated

- Diagrid expressed showing its true irregularity for reinforcement
- Tilted but square geometry
- Curtain wall wraps large soffit

OMA w/ARUP CCTV 2012, Beijing, China RECTILINEAR

- Diagrid expressed behind continuous curtain wall
- Extra clear glazing chosen to allow AESS diagrid to show behind the glass
- Tapered building and triangulated plan required customization of glazing size at the 'corners'
- Majority of glazing units are uniform in size and go 'floor to floor'
- Expression of fire refuge floors

WILKINSON + EYRE w/ARUP
GUANGZHOU IFC 2010 - RECTILINEAR

- Curved shape
- Major expression of diagrid
- Non-rectilinear geometries
- Unique end condition

MZ ARCHITECTS w/ARUP ALDAR HQ 2012 - TRIANGULATED

Façade cleaning

- 18° backwards lean
- Some external sun shading
- Triangulated glazing to fit form
- Abseiling as the method of cleaning

Façade cleaning

- Curved shape
- Triangulated glazing means no vertical track for equipment
- Need to prevent cables from hitting the façade

FOSTER+PARTNERS w/ARUP SWISS RE 2004

Exposure

- Fire engineering a must (codes)
- Member selection criteria
- Function of space/aesthetic
- Impact of scale of members/nodes

RMJM ARCHITECTS

CAPITAL GATE 2012

Exposure

- Fire engineering a must (codes)
- Concrete-filled steel tubes + Intumescent
- Function of space/aesthetic
- Impact of scale of members/nodes

WILKINSON + EYRE w/ARUP GUANGZHOU IFC 2010

- Climate restricted (hot or temperate)
- Thermal bridging issues
- Corrosion protection

FITZPATRICK+PARTNERS w/ARUP MCQUARIE BANK 2011 Sydney, Australia

- Hot dip galvanized exterior structure
- standard structural steel interior
- bolted site connections

FITZPATRICK+PARTNERS w/ARUP MCQUARIE BANK 2011 Sydney, Australia

- Climate restricted
- Thermal bridging
- Corrosion protection

WARREN + MAHONEY ARCHITECTS w/MJH ENGINEERING Manukau Institute of Technology Auckland, New Zealand

- Module 5 storeys
- Middle node at mid floor height
- Use of steel cable to tie mid height nodes together

- Climate restricted
- Thermal bridging

CANTON TOWER
IBA ARCHITECTURE w/ARUP
Guangzhou, China

Communication

- Specialty steel modeling software is essential
- Fabricator more involved in detailing and construction sequencing decisions

FOSTER+PARTNERS w/ ZEIDLER
HALCROW YOLLES
BOW ENCANA 2012

Communication

Terri Meyer Boake Professor School of Architecture University of Waterloo

tboake@uwaterloo.ca www.tboake.com