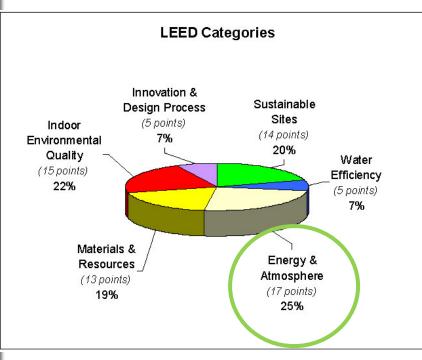
Mining LEED[™] for Carbon:

Energy Effective Design and LEED[™] Credits

We will dissect this Platinum + Carbon Neutral Building To see how LEED[™] credits can be used as a spring point to elevate to Carbon Neutral


Comparing Carbon Neutral to LEED[™]

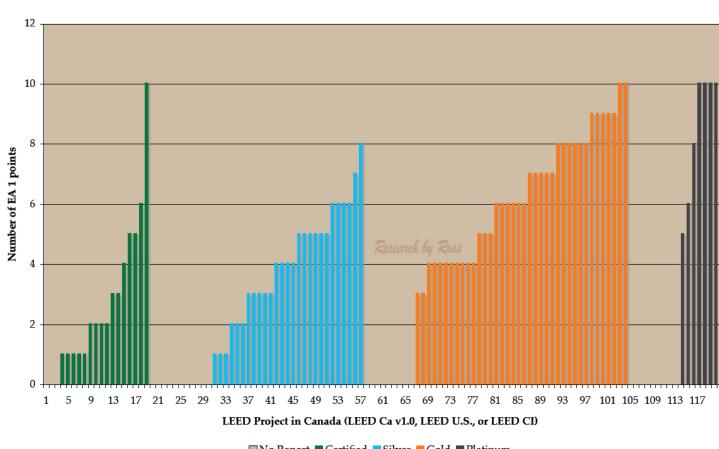
• LEED[™] is a *holistic assessment tool* that looks at the overall sustainable nature of buildings within a prescribed rating system *to provide a basis for comparison* – with the hopes of changing the market

 Projects are ranked from Certified to Platinum on the basis of credits achieved in the areas of Sustainable Sites, Energy Efficiency, Materials and Resources, Water Efficiency, Indoor Environmental Quality and Innovation in Design Process

• LEED[™] does not assess the Carbon value of a building, its materials, use of energy or operation

• Most LEED Gold and Platinum buildings earn a maximum of 5/17 of the Energy and Atmosphere Credits!

Only 25% of the LEED credits are devoted to energy.
Of those 10/70 are for


- Of those, 10/70 are for optimization.
- Maximum reduction is 60%.

Most LEED buildings earn less than 5 of these credits.....

And the first aim of Carbon Neutral Design is to achieve 100% reduction...

10	Energy &	Atmosphere	Possible Points: 17					
Y	Prereq 1	Fundamental Building Systems Commissioning						
Y	Prereq 2	Minimum Energy Performance						
Y	Prereq 3	CFC Reduction in HVAC & R Equipment	t					
2	Credit 1.1	Optimize Energy Performance, 20% New	w / 10% Existing					
2	Credit 1.2	Optimize Energy Performance, 30% New	w / 20% Existing					
2	Credit 1.3	Optimize Energy Performance, 40% New	w / 30% Existing					
2	Credit 1.4	Optimize Energy Performance, 50% New	w / 40% Existing					
1	Credit 1.5	Optimize Energy Performance, 60% New	w / 50% Existing					
	Credit 2.1	Renewable Energy, 5% Contribution						
	Credit 2.2	Renewable Energy, 10% Contribution						
	Credit 2.3	Renewable Energy, 20% Contribution						
1	Credit 3	Additional Commissioning						
	Credit 4	Elimination of HCFCS and Halons	Scorecard for National					
	Credit 5		Works Yard in Vancouver,					
	Credit 6	Green Power	LEED™Gold					

LEED and Predicted Energy Credits

Points earned for PREDICTED energy efficiency (EA 1)

■No Report ■ Certified ■ Silver ■ Gold ■ Platinum

Research conducted by Barbara Ross for her M.Arch. Thesis (2009)

2030 Targets - Commercial

2030 CHALLENGE Targets: National Averages

U.S. Average Site Energy Use and 2030 Challenge Energy Reduction Targets by Space/Building Type (CBECS 2003)¹

2030 Challenge Site EUI Targets (kBtu/Sq.Ft./Yr) Available Average Average Average in Target Primary Space/Building Type² Source EUI Percent Site EUI⁴ 50% 60% 70% 80% 90% Finder ³ (kBtu/Sg.Ft./Yr) Electric (kBtu/Sq.Ft./Yr) Target Target Target Target Target Administrative/Professional & J Government Office J Bank Clinic/other outpatient health 219 76% 84.2 42.1 33.7 25.3 16.8 8.4 College/university (campus-level) 60 280 63% 120 48 36 24 12 Convenience store 90% 120.7 753 241.4 96.6 72.4 48.3 24.1 (with or without gas station) 90 61% 44.2 22.1 17.7 13.3 8.8 4.4 Distribution/shipping center Fast food 267.2 64% 213.7 160.3 106.9 1306 534.3 53.4 Fire station/police station 157 56% 77.9 31.2 23.4 15.6 7.8 39.0 Hospital/inpatient health J **Reduction over MNECB** kBtu/sf/yr J Hotel, Motel or inn 123 5% K-12 School J 109 10% 96 15% Medical Office 82 20%

From the Environmental Protection Agency (EPA): Use this chart to find the site fossil-fuel energy targets.

Target Finder is an online tool:

http://www.energystar.gov/index.cfm?c=new_bldg_design.bus_t arget_finder

 Reduction over MNECB

 kBtu/sf/yr

 123
 5%

 109
 10%

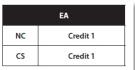
 96
 15%

 82
 20%

 68
 25%

 61
 30%

 54
 35%


 48
 40%

 41
 45%

 34
 50%

LEED[™] 2009 and Operating Energy

OPTIMIZE ENERGY PERFORMANCE

	NC	CS
Credit	EA Credit 1	EA Credit 1
Points	1-19 points	3-21 points

INTENT

To achieve increasing levels of energy performance beyond the prerequisite standard to reduce environmental and economic impacts associated with excessive energy use.

REQUIREMENTS: NC & CS

Select 1 of the 3 compliance path options described below. Project teams documenting achievement using any of the 3 options are assumed to be in compliance with EA Prerequisite 2: Minimum Energy Performance

OPTION 1. WHOLE BUILDING ENERGY SIMULATION (1-19 points for NC, 3-21 points for CS)

EITHER

PATH 1. Model National Energy Code For Buildings (MNECB)

Demonstrate a percentage cost improvement in the proposed building performance rating compared with the reference building performance rating. Calculate the reference building performance according to the Model National Energy Code for Buildings 1997 (MNECB) using a computer simulation model for the whole building project. The minimum energy cost savings percentage for each point threshold is as follows:

LEED[™] 2009 and Operating Energy: Path 1 Model National Energy Code for Buildings

NEW BUILDINGS	EXISTING BUILDING RENOVATIONS	POINTS FOR NC	POINTS FOR CS
25%	21%	1	3
27%	23%	2	4
28%	25%	3	5
30%	27%	4	6
32%	28%	5	7
33%	30%	6	8
35%	32%	7	9
37%	33%	8	10
39%	35%	9	11
40%	37%	10	12
42%	39%	11	13
44%	40%	12	14
45%	42%	13	15
47%	44%	14	16
49%	45%	15	17
50%	47%	16	18
52%	49%	17	19
54%	50%	18	20
56%	52%	19	21

Reduction over MNECB kBtu/sf/yr						
123	5%					
109	10%					
96	15%					
82	20%					
68	25%					
61	30%					
54	35%					
48	40%					
41	45%					
34	50%					

The energy analysis done for the building performance rating method must include all the energy costs associated with the building project. To achieve points under this credit, the proposed design must meet the following criteria:

- Compliance with the mandatory provisions of the MNECB 1997.
- Inclusion of all the energy costs within and associated with the building project.
- Comparison against a baseline building that complies with the reference building requirements as defined in the MNECB 1997.

LEED[™] 2009 and Operating Energy: ASHRAE 90.1 - 2007

OR

PATH 2. ASHRAE 90.1-2007, Energy Standard for Buildings Except Low-Rise Residential Buildings

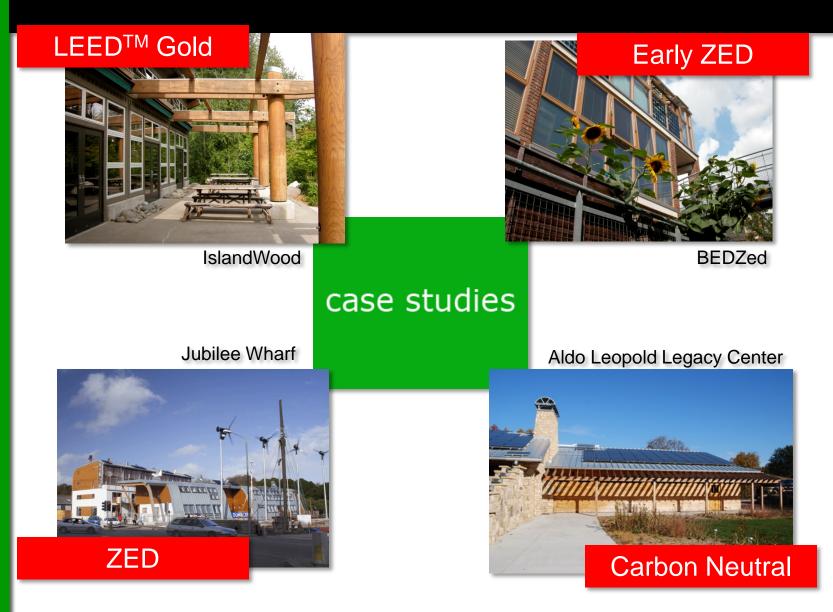
Demonstrate a percentage cost improvement in the proposed building performance rating compared with the baseline building performance rating. Calculate the baseline building performance according to Appendix G of ANSI/ASHRAE/IESNA Standard 90.1-2007 (with errata but without addenda^a) using a computer simulation model for the whole building project. The minimum energy cost savings percentage for each point threshold is as follows:

LEED[™] 2009 and Operating Energy: ASHRAE 90.1 - 2007

NEW BUILDINGS	EXISTING BUILDING RENOVATIONS	POINTS FOR NC	POINTS FOR CS
12%	8%	1	3
14%	10%	2	4
16%	12%	3	5
18%	14%	4	6
20%	16%	5	7
22%	18%	6	8
24%	20%	7	9
26%	22%	8	10
28%	24%	9	11
30%	26%	10	12
32%	28%	11	13
34%	30%	12	14
36%	32%	13	15
38%	34%	14	16
40%	36%	15	17
42%	38%	16	18
44%	40%	17	19
46%	42%	18	20
48%	44%	19	21

LEED[™] 2009 and Renewable Energy

NEW CONSTRUCTION:


PERCENTAGE RENEWABLE ENERGY	POINTS
1%	1
3%	2
5%	3
7%	4
9%	5
11%	6
13%	7

CORE AND SHELL:

PERCENTAGE RENEWABLE ENERGY	POINTS		
0.5%	2		
1%	4		

A carbon neutral building should be able to supply 100% of operating energy with renewables avoiding the use of fossil fuels.

Towards Zero Energy \ Zero Carbon:

IslandWood – Mithun Architects and Planners

IslandWood is an education center, on Bainbridge Island near Seattle, Washington. It was awarded LEED[™] Gold Certification in 2002.

Team members (too numerous to fully list):

Mithun Architects

KEEN Engineering (Stantec)

Berger Partnership Landscape

Western Sun

2020 Engineering

Browne Engineering

IslandWood – Using the LEED[™] System

A high LEED[™] rating can be used as the basis for considering <u>extending performance to Zero Carbon.</u>

Need also to go "back to the basics" of:

- ✓Orientation
- ✓Climate
- ✓ Passive solar design
- ✓Passive cooling
- ✓Daylighting
- ✓ Low impact materials: low embodied energy, reclaimed, recycled
- ✓Minimization of site impact
- Maximizing energy efficiency of envelope and building
- ✓ Reduction of electricity usage
- ✓Minimizing need for additional fuel maximizing on site renewables

IslandWood – Sustainable Sites (9/14 possible points)

SS Prerequisite 1, Erosion & Sedimentation Control

SS Credit 1, Site Selection

Inference of reduced carbon emissions from personal transportation

People, "Use"

Transportation

SS Credit 4.1, Alternative Transportation, Public Transportation Access

SS Credit 4.2, Alternative Transportation, Bicycle Storage & Changing Rooms

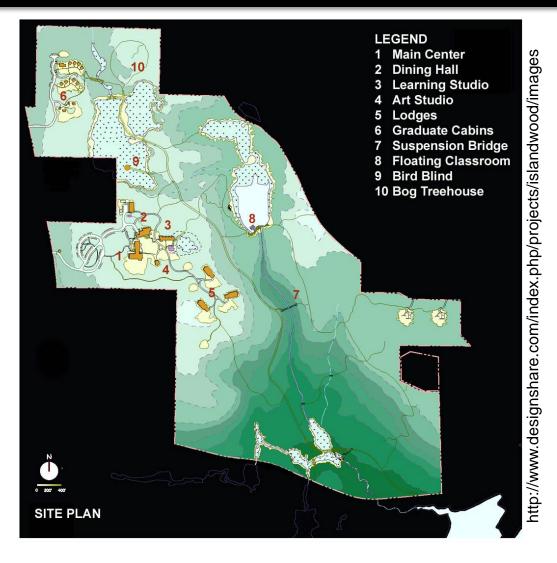
SS Credit 4.4, Alternative Transportation, Parking Capacity

SS Credit 5.1, Reduced Site Disturbance, Protect or Restore Open Space

SS Credit 5.2, Reduced Site Disturbance, Development Footprint

SS Credit 6.2, Stormwater Management, Treatment

SS Credit 7.1, Landscape & Exterior Design to Reduce Heat Islands, Non-Roof


SS Credit 8, Light Pollution Reduction

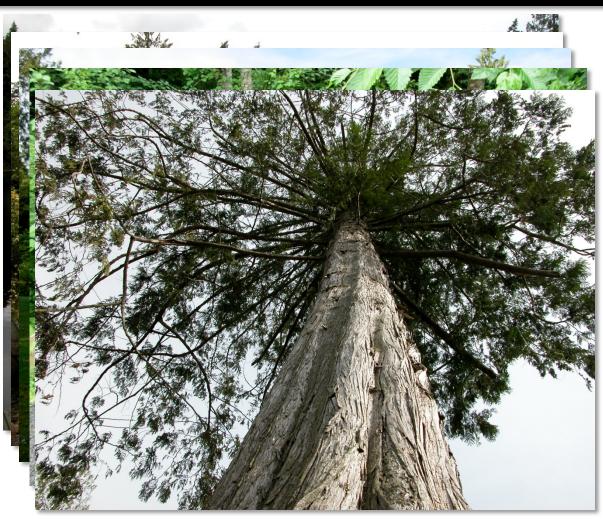
Inference of reduced carbon emissions from site disturbance and possible sequestration potential from restoration of green elements

Landscape + Site

IslandWood – Sustainable Sites (9/14 possible points)

Overview map of the development showing topography and building clustering to ensure the minimum disruption and impact on the land.

IslandWood – Sustainable Sites (9/14 possible points)


Wetland was protected
Building done on most degraded part of site
Buildings were

clustered to 3% of the site

•Parking was limited

•Pathways mostly pervious

•Landscape was considered to promote indigenous species

IslandWood – Energy and Atmosphere (4/17 possible points)

EA Prerequisite 1, Fundamental Building Systems Commissioning

EA Prerequisite 2, Minimum Energy Performance

EA Prerequisite 3, CFC Reduction in HVAC&R Equipment

EA Credit 1.1a, Optimize Energy Performance, 15% New 5% Existing

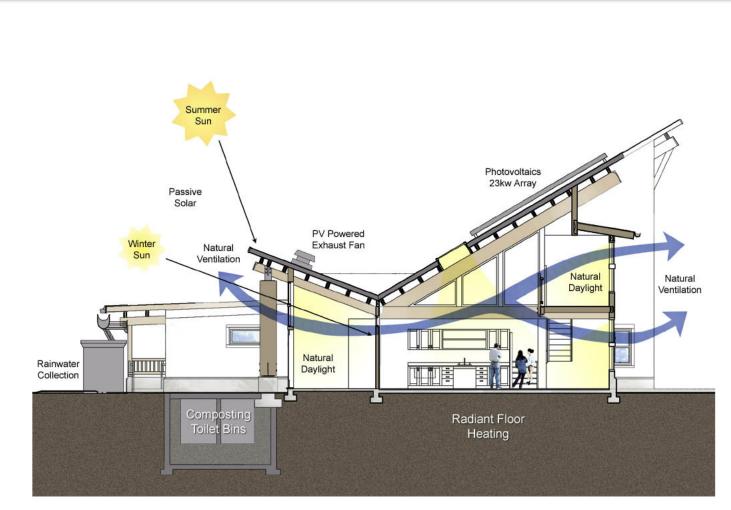
EA Credit 1.1b, Optimize Energy Performance, 20% New 10% Existing

EA Credit 1.2a, Optimize Energy Performance, 25% New 15% Existing

EA Credit 4, Ozone Depletion

Although there is PV on the building, it is not enough to earn any of these credits, so obviously not enough to satisfy a carbon neutral state

Renewables + Site Generation


Not using Green Power indicates that electricity purchased *may* be from coal based sources

4	Energy	y & Atmosphere	Possible Points:	17
Y				
Y	Prereq 1	Fundamental Building Systems Commissio	ning	
Y	Prereq 2	Minimum Energy Performance		
Y	Prereq 3	CFC Reduction in HVAC&R Equipment		
2	Credit 1.1	Optimize Energy Performance, 20% New / 109	% Existing	2
1	Credit 1.2	Optimize Energy Performance, 30% New / 209	% Existing	2
	Credit 1.3	Optimize Energy Performance, 40% New / 309	% Existing	2
	Credit 1.4	Optimize Energy Performance, 50% New / 409	% Existing	2
	Credit 1.5	Optimize Energy Performance, 60% New / 50%	% Existing	2
	Credit 2.1	Renewable Energy, 5%		1
	Credit 2.2	Renewable Energy, 10%		1
	Credit 2.3	Renewable Energy, 20%		1
	Credit 3	Additional Commissioning		1
1	Credit 4	Ozone Depletion		1
	Credit 5	Measurement & Verification		1
	Credit 6	Green Power		1

The building was designed to work with the Bioclimatic condition of Bainbridge Island. West Coast (coastal) Temperate.

Operating energy

IslandWood – Passive Design Strategies: Heating and Cooling

IslandWood – Energy and Atmosphere (4/17 possible points)

•Exploration of passive heating systems

•Solar orientation, creation of "solar meadow" to ensure solar gain

Large overhangs to prevent overheating
Natural ventilation
Solar hot water heating

•Photovoltaic panels

Although the appearance of the buildings gives the impression that its energy use might be as low as a Carbon Neutral Building, the numbers do not bear the same conclusion. ZERO Carbon is a number...

IslandWood – Water Efficiency (5/5 possible points)

WE Credit 1.1, Water Efficient Landscaping, Reduce by 50% WE Credit 1.2, Water Efficient Landscaping, No Potable Water Use or No Irrigation WE Credit 2, Innovative Wastewater Technologies WE Credit 3.1, Water Use Reduction, 20% Reduction

WE Credit 3.2, Water Use Reduction, 30% Reduction

There is a soft connection between Water Efficiency and Carbon Neutrality if you think of an associated reduction in the energy requirement to run systems (i.e. electricity for pumps)

IslandWood – Water Efficiency (5/5 possible points)

Rainwater collection from all roofs – use water for irrigation
Composting toilets
Waterless urinals and low flush toilets
Living Machine to treat blackwater to tertiary level of purification

Statistics show that Water Efficiency credits have the highest percentage of buy in on LEED[™] projects.

IslandWood – Materials and Resources (7/13 possible points)

MR Prerequisite 1, Storage & Collection of Recyclables

MR Credit 2.1, Construction Waste Management, Divert 50%

MR Credit 2.2, Construction Waste Management, Divert 75%

MR Credit 3.1, Resource Reuse, Specify 5%

MR Credit 4.1, Recycled Content: 5% (post-consumer + 1/2 post-industrial)

MR Credit 5.1, Local/Regional Materials, 20% Manufactured Locally

MR Credit 5.2, Local/Regional Materials, of 20% Above, 50% Harvested Locally

MR Credit 7, Certified Wood

These credits address the embodied energy of materials which responds to future Carbon Neutral considerations when we go beyond Operating Energy

> Embodied Carbon in Building Materials

IslandWood – Materials and Resources (7/13 possible points)

- All timber cleared on site was milled into siding and furniture

- Buildings designed with exposed structural systems, including roof trusses, wood shear walls, and concrete slabs, eliminating need for interior finish materials

- Concrete with 50% flyash

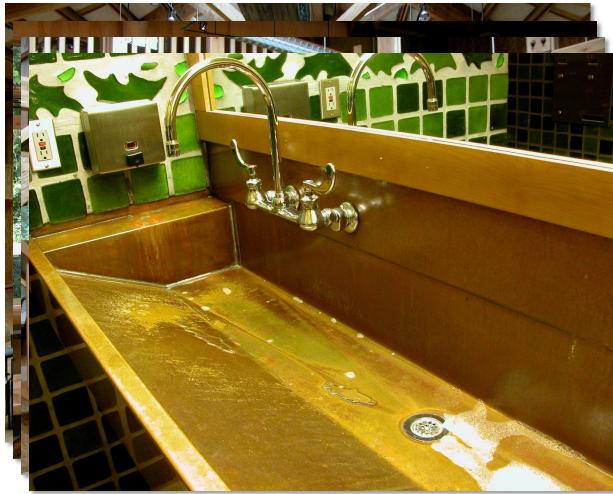
 strawbale used for studio

- innovative recycled content "everywhere"

IslandWood – Indoor Environmental Quality (12/15 possible points)

EQ Prerequisite 1, Minimum IAQ Performance EQ Prerequisite 2, Environmental Tobacco Smoke (ETS) Control EQ Credit 1, Carbon Dioxide (CO2) Monitoring EQ Credit 2. Increase Ventilation Effectiveness EQ Credit 3.1, Construction IAQ Management Plan, During Construction EQ Credit 3.2, Construction IAQ Management Plan, Before Occupancy EQ Credit 4.1, Low-Emitting Materials, Adhesives & Sealants EQ Credit 4.2, Low-Emitting Materials, Paints EQ Credit 4.3, Low-Emitting Materials, Carpet EQ Credit 4.4, Low-Emitting Materials, Composite Wood EQ Credit 5, Indoor Chemical & Pollutant Source Control EQ Credit 6.1, Controllability of Systems, Perimeter EQ Credit 7.1, Thermal Comfort, Comply with ASHRAE 55-1992 Operating energy EQ Credit 8.2, Daylight & Views, Views for 90% of Spaces

Daylighting has the potential to reduce the requirement for electricity IF used in conjunction with control systems



Daylit spaces at Islandwood

IslandWood – Indoor Environmental Quality (12/15 possible points)

- All buildings are extensively daylit
- windows are operable
- extensive
 incorporation of low
 emitting materials

IslandWood – Innovation in Design Process (3/5 possible points)

ID Credit 1.1, Innovation in Design "Environmental Education"

ID Credit 1.2, Innovation in Design "High Volume Fly Ash"

ID Credit 2, LEED® Accredited Professional

Carbon Neutrality could be used to gain an Innovation Credit or Multiple Innovation Credits if you exceed the maximum expectations in a number of credit areas.

Existing Carbon Neutral/Zero Energy Buildings

Zero Energy Buildings									
Using the Database	The Zero Energy Buildings Database features profiles of commercial buildings that produce as much energy as they use over the course of a year.								
Search by Project Name		Learn more about the types of zero energy buildings. This database highlights projects from across the country and provides ideas that can be applied to any new building.							
Search by Owner			Buildings Database is part of the High I ings Database to discover more energy			lists many additional proj	ects. Visit th	e <u>High</u>	
Search by Location			about the zero energy buildings listed l process, financing, energy use, materi			ct to view in-depth infor	mation about	the design	
Search by Energy Data	Display	ying 10 project((s) in the table below. (<u>click here</u> for help).						
Search by Building Type & Size		Picture	Name	Owner	Location	Building Type	Floor Area (ft²)	Annual Purchased Energy (kBtu/ft²)	
List All Projects			Aldo Leopold Legacy Center	The Aldo Leopold Foundation, Inc.	Baraboo, WI	Commercial office; Interpretive Center	11,900	-2.02	
Detailed Search			Audubon Center at Debs Park	The National Audubon Society	Los Angeles, CA	Recreation; Interpretive Center; Park	5,020		
			Challengers Tennis Club	Whittier Foundation	Los Angeles, CA	Recreation	3,500	-0.0955	
			Environmental Tech. Center, Sonoma State	Sonoma State University	Rohnert Park, CA	Higher education; Laboratory	2,200	-1.47	
			Hawaii Gateway Energy Center	Natural Energy Laboratory of Hawaii Authority (NELHA)	Kailua-Kona, HI	Commercial office; Interpretive Center; Assembly; Other	3,600	-3.46	
			IDeAs Z2 Design Facility	David and Stephania Kaneda	San Jose, CA	Commercial office	6,560	-0.00052	
		-	<u>Net zero house— Charlotte,VT</u>	David Pill	Charlotte, VT	Single-family residential	2,970		
			Oberlin College Lewis Center	Oberlin College	Oberlin, OH	Higher education; Library; Assembly; Campus	13,600	-4.23	
			Science House	Science Museum of Minnesota	St. Paul, MN	Interpretive Center	1,530	0	
			<u>TD Bank - Cypress Creek Store</u>	TD Bank, N.A.	Ft Lauderdale, FL	Retail	3,970		
	10 project(s)								

The list on <u>http://zeb.buildinggreen.com/</u> sits at 10 projects.

Aldo Leopold Legacy Center Baraboo, Wisconsin

The Kubala Washatko Architects LEED[™] Platinum 2007

Technical information from Prof. Michael Utzinger, University of Wisconsin-Milwaukee

Aldo Leopold Center LEEDTM Analysis

12/14 Sustainable Sites 5/5 Water Efficiency

17/17 Energy and Atmosphere

7/13 Materials and Resources15/15 Indoor Environmental Quality5/5 Innovation and Design Process

61/69 Total

For more detailed info on the Leopold Center, visit http://www.aldoleopold.org/legacycenter/carbonneutral.html and

http://leedcasestudies.usgbc.org/overview.cfm?ProjectID=946

Operating Energy of Building

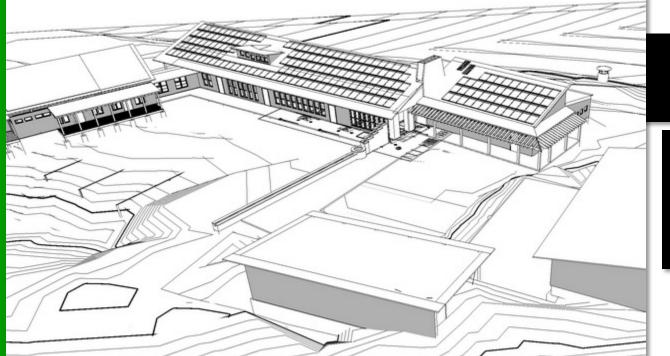
80% of the problem!

Landscape + Site

Disturbance vs. sequestration

Embodied Carbon in Building Materials

People, "Use" + Transportation


Counting Carbon costs....

Renewables + Site Generation

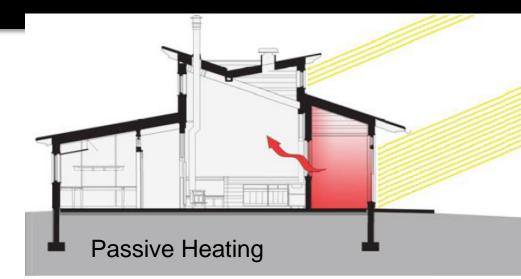
+ purchased offsets

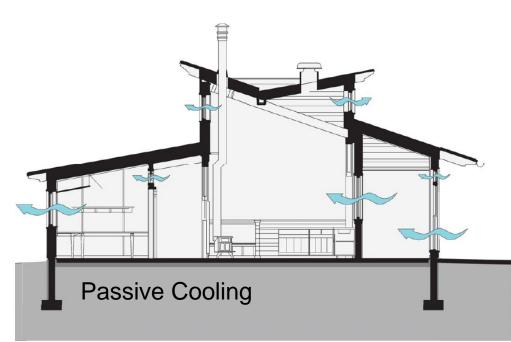
Leopold Approach to Carbon Neutral Design

- Design a Net Zero (Operating Energy) Building
- Apply Carbon Balance to Building Operation (Ignore Carbon Emissions due to Construction)
- Include Carbon Sequestration in Forests
 Managed by Aldo Leopold Foundation
- Design to LEED[™] Platinum (as well)

The South elevation is designed to capture energy.

The North elevation is designed for thermal resistance, daylighting and ventilation.




The buildings were arranged in a U shape around a solar meadow that ensured access

Architectural Design Strategies

- Start with bioclimatic design
- Program Thermal Zones
- All perimeter zones (no interior zones skin load dominated building)
- Daylight all occupied zones
- Natural ventilation in all occupied zones
- Double code insulation levels
- Passive solar heating
- Shade windows during summer

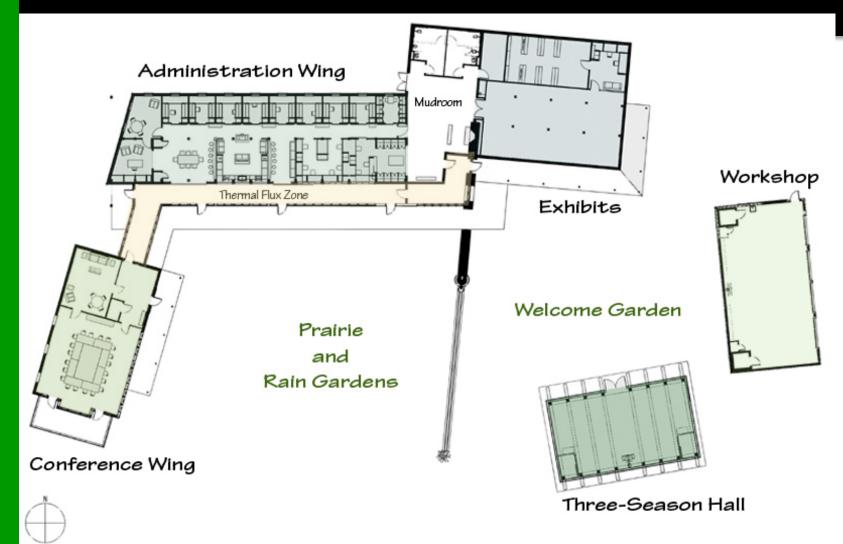
Energy and Atmosphere, 17 of 17 possible points: EA Credit 1

EA Prerequisite 1, Fundamental Building Systems Commissioning

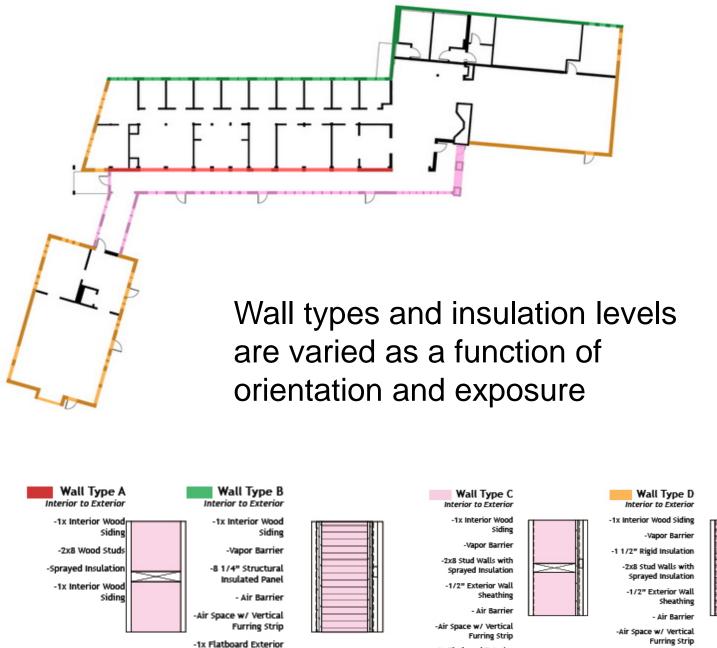
EA Prerequisite 2, Minimum Energy Performance

EA Prerequisite 3, CFC Reduction in HVAC&R Equipment

EA Credit 1.1a, Optimize Energy Performance, 15% New 5% Existing EA Credit 1.1b, Optimize Energy Performance, 20% New 10% Existing EA Credit 1.2a, Optimize Energy Performance, 25% New 15% Existing EA Credit 1.2b, Optimize Energy Performance, 30% New 20% Existing EA Credit 1.3a, Optimize Energy Performance, 35% New 25% Existing EA Credit 1.3b, Optimize Energy Performance, 40% New 30% Existing EA Credit 1.4a, Optimize Energy Performance, 45% New 35% Existing EA Credit 1.4b, Optimize Energy Performance, 50% New 40% Existing EA Credit 1.5a, Optimize Energy Performance, 55% New 45% Existing EA Credit 1.5b, Optimize Energy Performance, 60% New 50% Existing

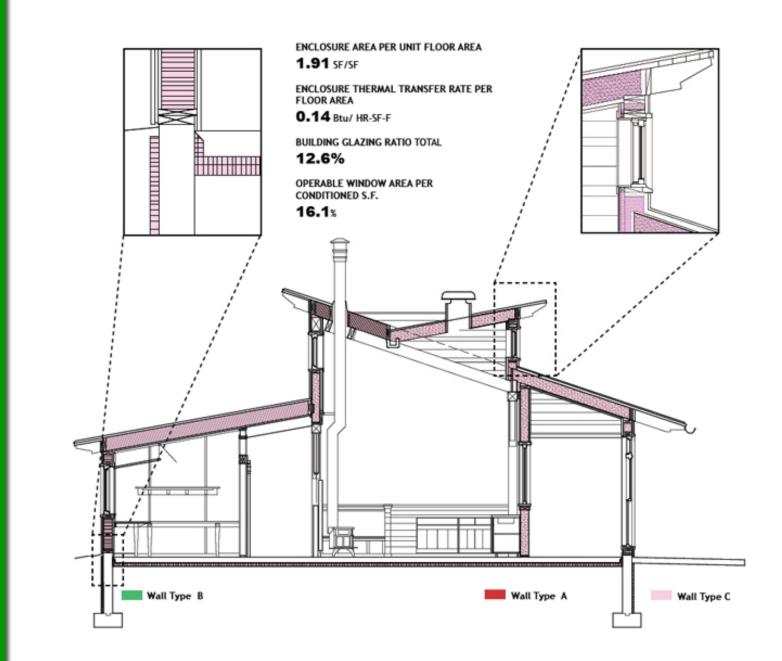

Operating energy

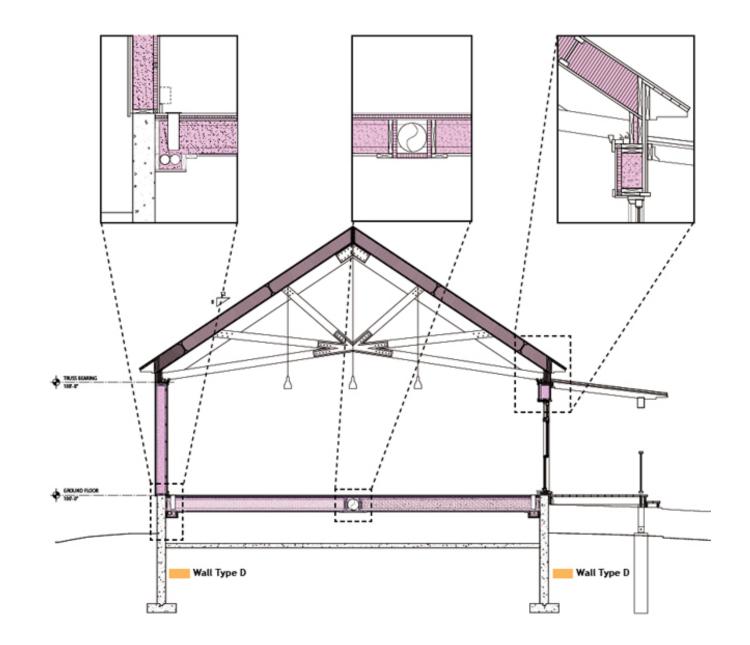
EA Credit 2.1, Renewable Energy, 5%

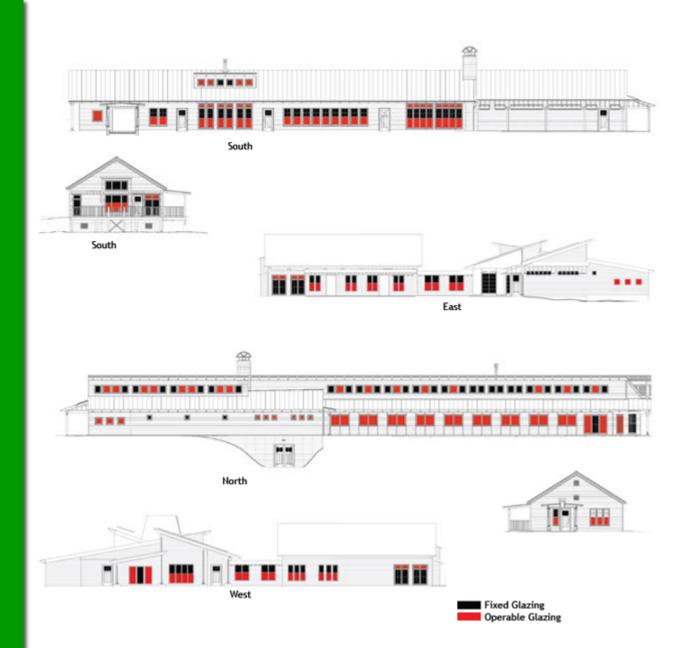

- EA Credit 2.2, Renewable Energy, 10%
- EA Credit 2.3, Renewable Energy, 20%
- EA Credit 3, Additional Commissioning
- EA Credit 4, Ozone Depletion
- EA Credit 5, Measurement and Verification
- EA Credit 6, Green Power

OPTIMIZE = REDUCTION This needs to be the main area of focus for low Carbon design.

Thermal Zones ~ Perimeter Zones

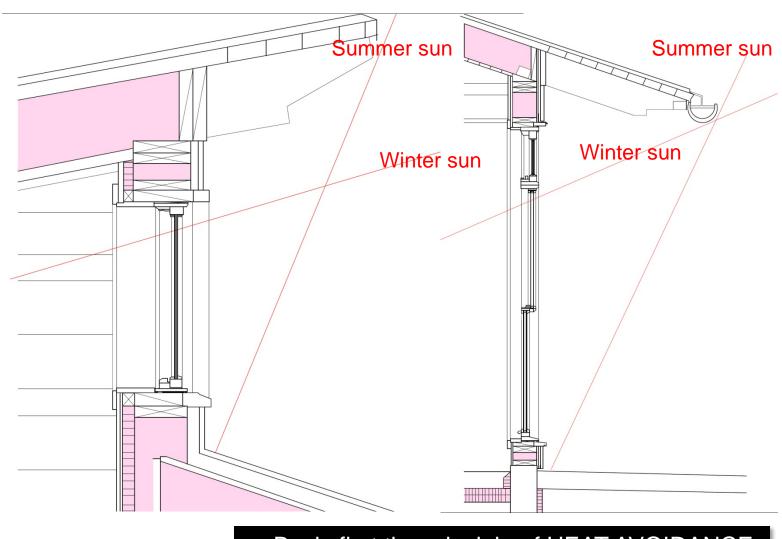

Keep the buildings thin to allow for maximum daylight and use of solar for passive heating with operable windows to make natural ventilation work.

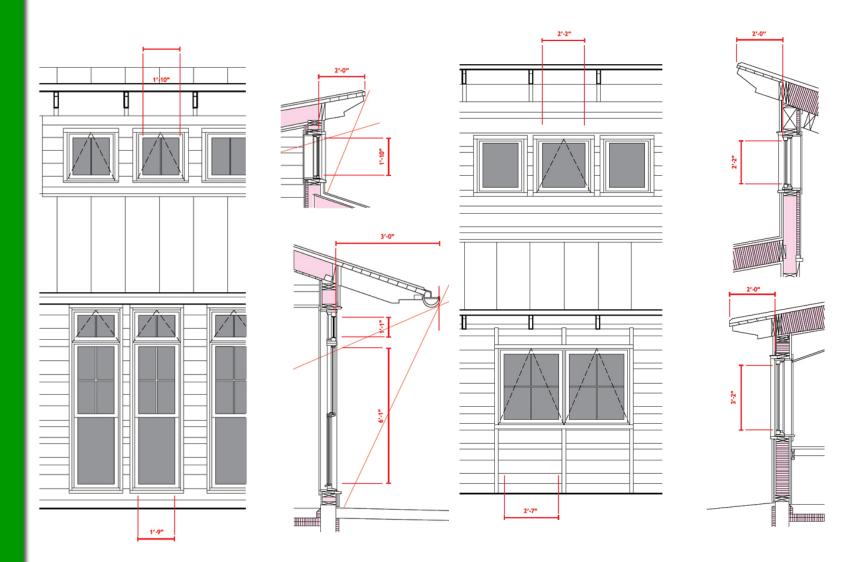



Wood Siding

-1x Flatboard Exterior Wood Siding

-1x Flatboard Exterior Wood Siding





Glazing study for fixed vs operable and orientation

Passive Cooling: Shade Windows During Summer

Basic first tier principle of HEAT AVOIDANCE.

Facades are fine tuned for orientation – overhang length and window size varies

Natural Ventilation

- Natural ventilation strategy based on NO A/C provision for the building
- Operable windows
- Flow through strategy
- Insect screens to keep out pests

Energy and Atmosphere, 17 of 17 possible points: EA Credit 2 and Credit 6

EA Prerequisite 1, Fundamental Building Systems Commissioning EA Prerequisite 2, Minimum Energy Performance EA Prerequisite 3, CFC Reduction in HVAC&R Equipment EA Credit 1.1a, Optimize Energy Performance, 15% New 5% Existing EA Credit 1.1b, Optimize Energy Performance, 20% New 10% Existing EA Credit 1.2a, Optimize Energy Performance, 25% New 15% Existing EA Credit 1.2b, Optimize Energy Performance, 30% New 20% Existing EA Credit 1.3b, Optimize Energy Performance, 35% New 25% Existing EA Credit 1.3b, Optimize Energy Performance, 40% New 30% Existing EA Credit 1.4a, Optimize Energy Performance, 40% New 35% Existing EA Credit 1.4b, Optimize Energy Performance, 50% New 40% Existing EA Credit 1.5b, Optimize Energy Performance, 55% New 45% Existing

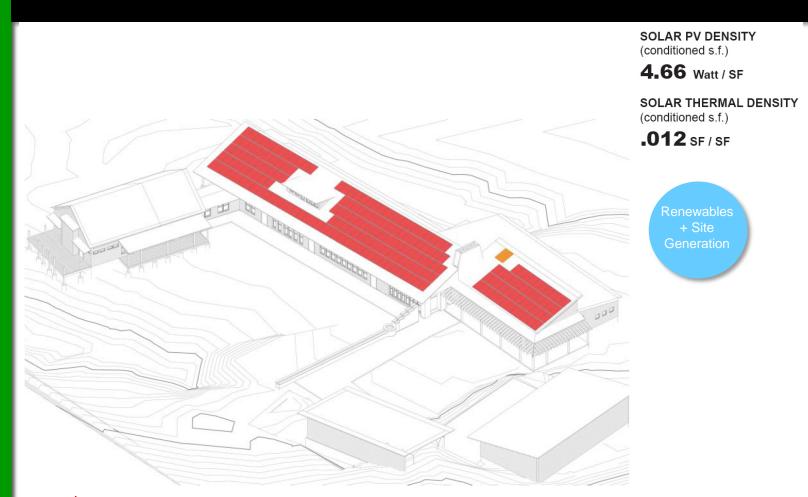
EA Credit 2.1, Renewable Energy, 5%

EA Credit 2.2, Renewable Energy, 10%

EA Credit 2.3, Renewable Energy, 20%

EA Credit 3, Additional Commissioning

EA Credit 4, Ozone Depletion

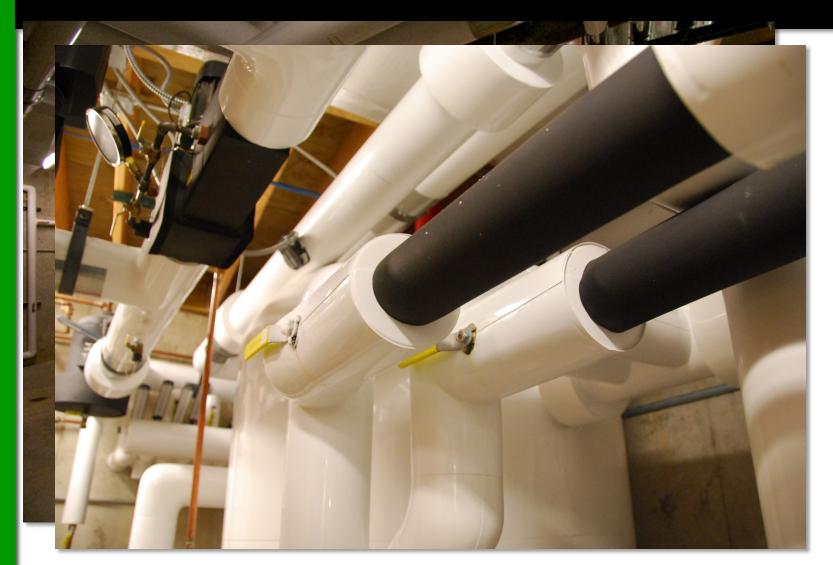

EA Credit 5, Measurement and Verification

EA Credit 6, Green Power

Renewable + Site Generation Optimization has not been exhausted, it is very unlikely that Renewable Energy will be adequate to power the mechanical systems.

lf

#1 - Net Zero Energy Design



A \$US250,000 PV array was included at the outset of the project budget and the building was designed to operate within the amount of electricity that this would generate.

Almost every square inch of roof was used for PV and solar hot water array mounting.

Ground Source Heat Pumps

Super insulate hot water runs to minimize heat losses.

Sustainable Sites, 12 of 14 possible points: SS Credit 3

SS Prerequisite 1, Erosion & Sedimentation Control

SS Credit 1, Site Selection

Landscape + Site

SS Credit 3, Brownfield Redevelopment

SS Credit 4.2, Alternative Transportation, Bicycle Storage & Changing Rooms

SS Credit 4.3, Alternative Transportation, Alternative Fuel Refueling Stations

SS Credit 4.4, Alternative Transportation, Parking Capacity

SS Credit 5.1, Reduced Site Disturbance, Protect or Restore Open Space

SS Credit 5.2, Reduced Site Disturbance, Development Footprint

SS Credit 6.1, Stormwater Management, Rate and Quantity

SS Credit 6.2, Stormwater Management, Treatment

SS Credit 7.1, Landscape & Exterior Design to Reduce Heat Islands, Non-Roof

SS Credit 7.2, Landscape & Exterior Design to Reduce Heat Islands, Roof

SS Credit 8, Light Pollution Reduction

Greening an existing brownfield can add plant materials to a site that are capable of sequestering carbon.

Sustainable Sites, 12 of 14 possible points: SS Credit 4

SS Prerequisite 1, Erosion & Sedimentation Control

SS Credit 1, Site Selection

SS Credit 3, Brownfield Redevelopment

People, "Use" -Transportation SS Credit 4.2, Alternative Transportation, Bicycle Storage & Changing Rooms SS Credit 4.3, Alternative Transportation, Alternative Fuel Refueling Stations

SS Credit 4.4, Alternative Transportation, Parking Capacity

SS Credit 5.1, Reduced Site Disturbance, Protect or Restore Open Space

SS Credit 5.2, Reduced Site Disturbance, Development Footprint

SS Credit 6.1, Stormwater Management, Rate and Quantity

SS Credit 6.2, Stormwater Management, Treatment

SS Credit 7.1, Landscape & Exterior Design to Reduce Heat Islands, Non-Roof

SS Credit 7.2, Landscape & Exterior Design to Reduce Heat Islands, Roof

SS Credit 8, Light Pollution Reduction

Alternative transportation reduces the GHG associated with travel to and from the building.

Sustainable Sites, 12 of 14 possible points: SS Credit 5

SS Prerequisite 1, Erosion & Sedimentation Control

SS Credit 1, Site Selection

SS Credit 3, Brownfield Redevelopment

SS Credit 4.2, Alternative Transportation, Bicycle Storage & Changing Rooms

SS Credit 4.3, Alternative Transportation, Alternative Fuel Refueling Stations

SS Credit 4.4, Alternative Transportation, Parking Capacity

SS Credit 5.1, Reduced Site Disturbance, Protect or Restore Open Space

SS Credit 5.2, Reduced Site Disturbance, Development Footprint

SS Credit 6.1, Stormwater Management, Rate and Quantity

Landscape + Site

SS Credit 6.2, Stormwater Management, Treatment

SS Credit 7.1, Landscape & Exterior Design to Reduce Heat Islands, Non-Roof

SS Credit 7.2, Landscape & Exterior Design to Reduce Heat Islands, Roof

SS Credit 8, Light Pollution Reduction

These credits can add plant materials to a site that are capable of sequestering carbon or repair existing natural landscape. Disturbance of the soil releases carbon into the atmosphere.

Sustainable Sites, 12 of 14 possible points: SS Credit 7

SS Prerequisite 1, Erosion & Sedimentation Control

SS Credit 1, Site Selection

SS Credit 3, Brownfield Redevelopment

SS Credit 4.2, Alternative Transportation, Bicycle Storage & Changing Rooms

SS Credit 4.3, Alternative Transportation, Alternative Fuel Refueling Stations

SS Credit 4.4, Alternative Transportation, Parking Capacity

SS Credit 5.1, Reduced Site Disturbance, Protect or Restore Open Space

SS Credit 5.2, Reduced Site Disturbance, Development Footprint

SS Credit 6.1, Stormwater Management, Rate and Quantity

SS Credit 6.2, Stormwater Management, Treatment

SS Credit 7.1, Landscape & Exterior Design to Reduce Heat Islands, Non-Roof

SS Credit 7.2, Landscape & Exterior Design to Reduce Heat Islands, Roof

SS Credit 8, Light Pollution Reduction

Heat island reduction lowers summer temperatures and reduces cooling load. *(Impossible to quantify...)* If plantings are used to do this, they can sequester carbon as well.

Operating energy

Landscape

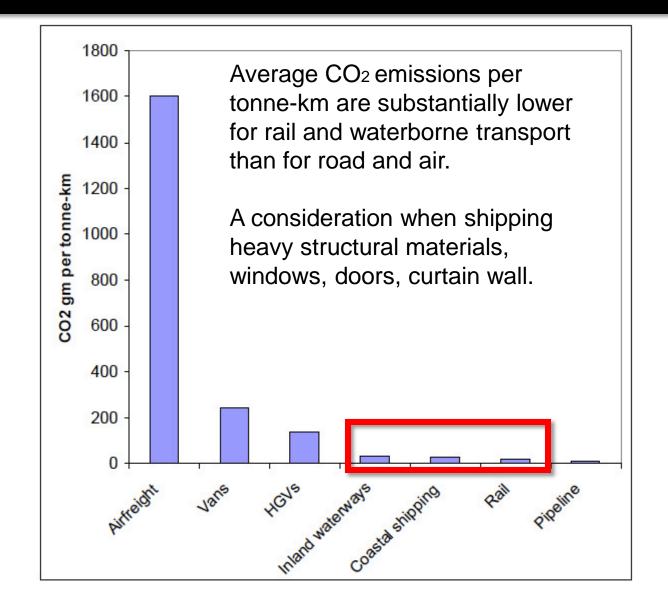
+ Site

Material choice matters.

- Material choice can reduce your building's *embodied* carbon footprint.

- Where did the material come from?
- Is it local?
- Did it require a lot of energy to extract it or to get it to your building?
- Can it be replaced at the source?
- Was it recycled or have significant post consumer recycled content?
- Can it be recycled or reused *easily;* i.e. with minimal additional energy?
- Is the material durable or will it need to be replaced (*lifecycle analysis*)?

Select the right material for the right end use



Foster's GLA – may claim to be high performance, but it uses many high energy materials.

Green on the Grand, Canada's first C-2000 building chose to import special windows from a distance rather than employ shading devices to control solar gain and glare.

Transportation choice matters.

Materials and Resources, 7 of 13 possible points: MR Credit 4

MR Prerequisite 1, Storage & Collection of Recyclables

MR Credit 2.1, Construction Waste Management, Divert 50%

MR Credit 2.2, Construction Waste Management, Divert 75%

Embodied Carbon in Building Materials

MR Credit 4.1, Recycled Content: 5% (post-consumer + 1/2 post-industrial)

MR Credit 4.2, Recycled Content: 10% (post-consumer + 1/2 post-industrial)

MR Credit 5.1, Local/Regional Materials, 20% Manufactured Locally

MR Credit 5.2, Local/Regional Materials, of 20% Above, 50% Harvested Locally

MR Credit 7, Certified Wood

Many of the MR credits will impact embodied carbon but it is not currently part of the calculation.

Year of entry:		The Life of Steel: 1 st life as:	oulanger CISC
1994	1	Cars	Credit: Sylvie Boulanger CISC
1979	2	Appliances	
1964	3	Cans	
1949	4	Chairs	
1934 <mark>- 1</mark> 934	5	Building	
1919	6	Tanks	
1909	7	Bridge	

Materials and Resources, 7 of 13 possible points: MR Credit 5

MR Prerequisite 1, Storage & Collection of Recyclables

MR Credit 2.1, Construction Waste Management, Divert 50%

MR Credit 2.2, Construction Waste Management, Divert 75%

Embodied Carbon in Building Materials

MR Credit 4.1, Recycled Content: 5% (post-consumer + 1/2 post-industrial)

MR Credit 4.2, Recycled Content: 10% (post-consumer + 1/2 post-industrial)

People, "Use" + Transportation MR Credit 5.1, Local/Regional Materials, 20% Manufactured Locally MR Credit 5.2, Local/Regional Materials, of 20% Above, 50% Harvested Locally

MR Credit 7, Certified Wood

The Leopold Foundation had a most unusual circumstance, owning their own Forest. However it is not that difficult to source materials locally.

Materials and Resources, 7 of 13 possible points: MR Credit 7

MR Prerequisite 1, Storage & Collection of Recyclables

MR Credit 2.1, Construction Waste Management, Divert 50%

MR Credit 2.2, Construction Waste Management, Divert 75%

Embodied Carbon in Building Materials

MR Credit 4.1, Recycled Content: 5% (post-consumer + 1/2 post-industrial)

MR Credit 4.2, Recycled Content: 10% (post-consumer + 1/2 post-industrial)

MR Credit 5.1, Local/Regional Materials, 20% Manufactured Locally

MR Credit 5.2, Local/Regional Materials, of 20% Above, 50% Harvested Locally

MR Credit 7, Certified Wood

Simply using wood is thought to be helpful in GHG as wood sequesters carbon. But this only makes sense if wood is the best or most local choice. Other materials may work better for different building types, uses, Fire code restrictions, etc.

#2 - Site Harvested Lumber:

The building was designed around the size and quantity of lumber that could be sustainably harvested from the Leopold Forest.

Embodied Carbon in Building Materials

Reuse to reduce impact

- Reuse of a building, part of a building or elements reduces the carbon impact by avoidance of using new materials.
- Make the changes necessary to improve the operational carbon footprint of an old building, before building new.
- Is there an existing building or Brownfield site that suits your needs?
- Can you adapt a building or site with minimal change?
- Design for disassembly (Dfd) and eventual reuse to offset future carbon use

The School of Architecture at Waterloo is a reused factory on a remediated Brownfield site.

All of the wood cladding at the YMCA Environmental Learning Center, Paradise Lake, Ontario was salvaged from the demolition of an existing building.

Materials and Resources, other opportunities MR Credit 1

People, "Use" + Transportation MR 1.1 **Building Reuse:** Maintain 75% of Existing Walls, Floors, and Roof MR1.2 **Building Reuse:** Maintain 95% of Existing Walls, Floors, and Roof MR1.3 **Building Reuse:** Maintain 50% of Interior Non-Structural Elements

Embodied Carbon in Building Materials

- Reuse SIGNIFICANT building elements in order to reduce the need for extraction and processing of new materials
- This saves a significant amount of embodied carbon
- This also saves associated transportation energy as all of this material does not need to be transported to the building site (again)

Materials and Resources, other opportunities MR Credit 3

MR Credit 3.1 Resource Reuse 5%

MR Credit 3.2 Resource Reuse 10%

Embodied Carbon in Building Materials

- Reuse materials in order to reduce the need for extraction and processing of new materials
- This is very helpful in the reuse of demolished structures
- Structural steel can be easily reused
- Wood can be reused for flooring

Indoor Environmental Quality, 15 of 15 possible points: EQ Prerequisite 2

EQ Prerequisite 1, Minimum IAQ Performance

EQ Prerequisite 2, Environmental Tobacco Smoke (ETS) Control

EQ Credit 1, Carbon Dioxide (CO2) Monitoring

EQ Credit 2, Increase Ventilation Effectiveness

EQ Credit 3.1, Construction IAQ Management Plan, During Construction

EQ Credit 3.2, Construction IAQ Management Plan, Before Occupancy

EQ Credit 4.1, Low-Emitting Materials, Adhesives & Sealants

EQ Credit 4.2, Low-Emitting Materials, Paints

EQ Credit 4.3, Low-Emitting Materials, Carpet

EQ Credit 4.4, Low-Emitting Materials, Composite Wood

EQ Credit 5, Indoor Chemical & Pollutant Source Control

EQ Credit 6.1, Controllability of Systems, Perimeter

EQ Credit 6.2, Controllability of Systems, Non-Perimeter

EQ Credit 7.1, Thermal Comfort, Comply with ASHRAE 55-1992 EQ Credit 7.2, Thermal Comfort, Permanent Monitoring System

- Credit 7.2, Thermal Comort, Fermanent Monitoring System

EQ Credit 8.1, Daylight & Views, Daylight 75% of Spaces

EQ Credit 8.2, Daylight & Views, Views for 90% of Spaces

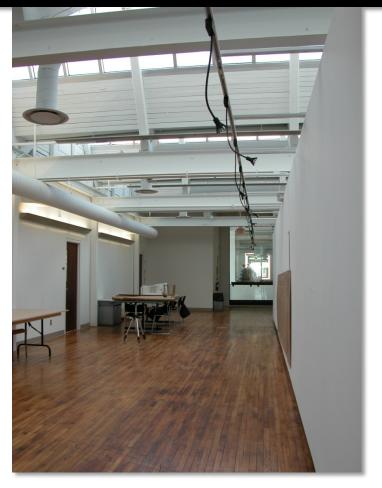
This requirement presents a huge impediment in Foreign countries.

COMMON SENSE

Indoor Environmental Quality, 15 of 15 possible points: EQ Credit 8

EQ Prerequisite 1, Minimum IAQ Performance

- EQ Prerequisite 2, Environmental Tobacco Smoke (ETS) Control
- EQ Credit 1, Carbon Dioxide (CO2) Monitoring
- **EQ Credit 2, Increase Ventilation Effectiveness**
- EQ Credit 3.1, Construction IAQ Management Plan, During Construction
- EQ Credit 3.2, Construction IAQ Management Plan, Before Occupancy
- EQ Credit 4.1, Low-Emitting Materials, Adhesives & Sealants
- EQ Credit 4.2, Low-Emitting Materials, Paints
- EQ Credit 4.3, Low-Emitting Materials, Carpet
- EQ Credit 4.4, Low-Emitting Materials, Composite Wood
- EQ Credit 5, Indoor Chemical & Pollutant Source Control
- EQ Credit 6.1, Controllability of Systems, Perimeter
- EQ Credit 6.2, Controllability of Systems, Non-Perimeter
- EQ Credit 7.1, Thermal Comfort, Comply with ASHRAE 55-1992

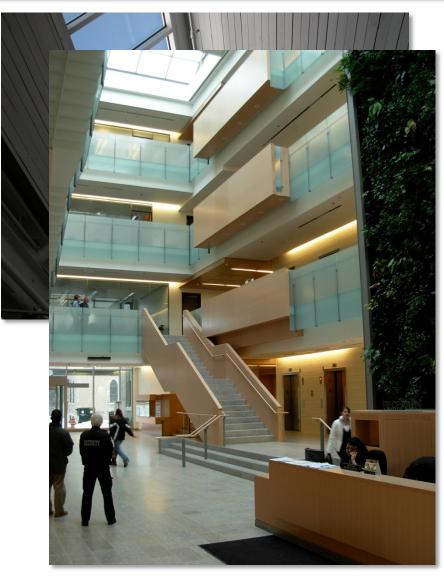

EQ Credit 7.2, Thermal Comfort, Permanent Monitoring System

EQ Credit 8.1, Daylight & Views, Daylight 75% of Spaces EQ Credit 8.2, Daylight & Views, Views for 90% of Spaces Operating energy

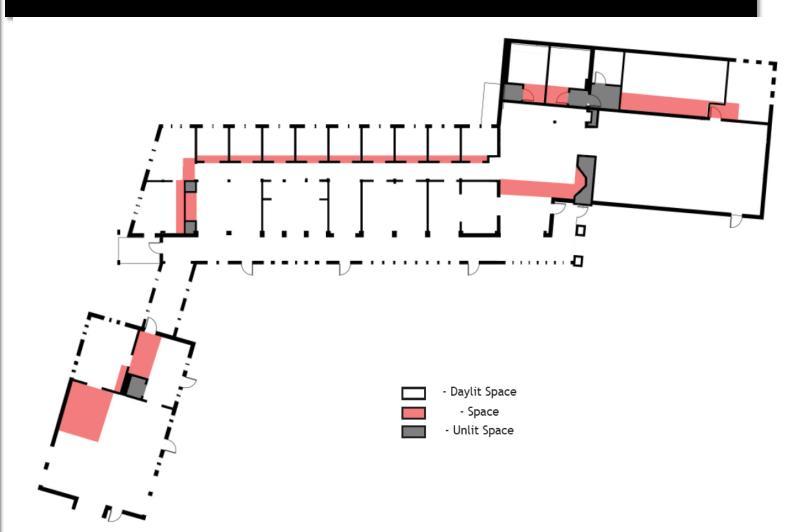
Passive Lighting Strategies:

- use energy efficient light fixtures (and effectively!)

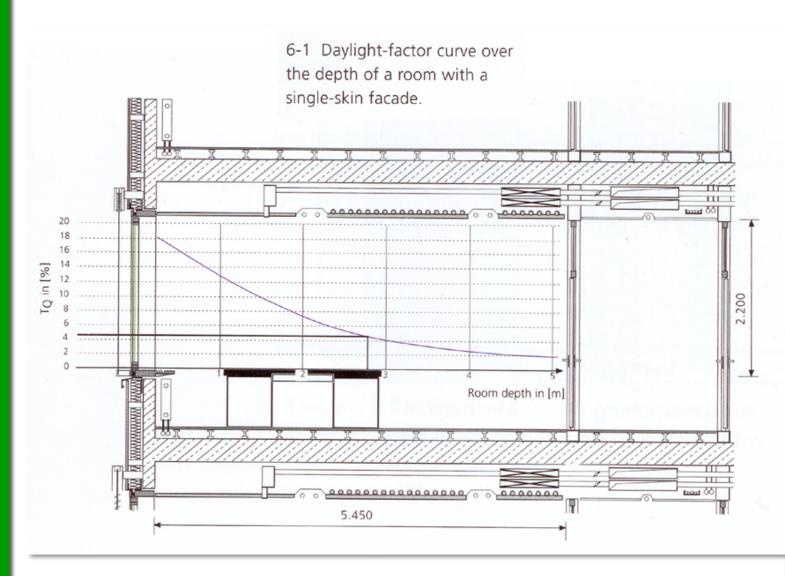
- use occupant sensors <u>combined with light level</u> <u>sensors</u>
- aim to only have lights
 switch on only when
 daylight is insufficient
- provide electricity via
 renewable means: wind,
 PV, CHP


Lights on due to occupant sensors when there is adequate daylight – WASTES ENERGY!

Passive Lighting Strategies: Orientation and building planning


- start with solar geometry
- understand context, sky dome, adjacent buildings and potential overshadowing
- be able to differentiate between sunlight (heat) and daylight (seeing)
- understand occupancy/use requirements
- maximize areas served by daylight
- explore different glazing strategies: side, clerestory, top
- consider light shelves and reflected light

Passive Lighting Strategies: Glare, color, reflectivity and materials


- incorporate light dynamics
- avoid glare
- understand the function of material selection; ie.
 reflectivity and surface qualities
- balance color and reflectivity with amount of daylight provided

Daylight All Occupied Zones

Electric lights are only ON when there is insufficient daylight. You need a THIN plan to make this work. Depth from window cannot exceed 5 m.

"Double-Skin Façades: Integrated Planning." Oesterle, Lieb, Lutz, Heusler. Prestel, 2001. p.80

- Amount of light determined by height of room, window design, head height, sill height + colour of surfaces and presence of furniture
- LEED daylight credit requires a minimum Daylight Factor of 2%

Watch out for finish colours. The natural colour of the wood made the left hand space more difficult to light naturally.

Innovation and Design Process, 5 of 5 possible points

ID Credit 1.1, Innovation in Design "Exemplary Performance, EAc6"

ID Credit 1.2, Innovation in Design "Exemplary Performance, EAc2"

ID Credit 1.3, Innovation in Design "Carbon Neutral Building Operation"

ID Credit 1.4, Innovation in Design "Exemplary Performance, MRc5.1"

ID Credit 2, LEED® Accredited Professional

Achieving carbon neutrality will pretty well guarantee ID credits for excesses in other categories.

Carbon Balance Analysis

Use the Greenhouse Gas Protocol of the World Resources Institute http://www.ghgprotocol.org/

Organizational Boundary: Aldo Leopold Foundation

Project Boundary:

Aldo Leopold Legacy Center and woodlots certified for sustainable harvest

Carbon Emissions Accounting

- Scope 1: Direct Emissions
 - Stationary Combustion (boilers, wood stoves)
 - Organizational Vehicles
- Scope 2: Indirect Emissions (electricity generation)
- Scope 3: Indirect Emissions (organizational activities)
 - Commuting to Work
 - Business Travel

Scope 1: Direct Greenhouse Gas Emissions

	Fuel	Amount	CO ₂ Emissions (metric tons)
Direct combustion	Wood	2 cords	6.7
Vehicles	Gas	1,490 gallons	13.2
Total emissions			19.9

Scope 2: Indirect Greenhouse Gas Emissions (Electricity)

Electricity Source	Amount (kWh/year)	CO ₂ Emissions (metric tons)
Green power contract	33,400	10.6 (offset)
Site solar generation	32,300	10.2 (offset)
Net carbon offset		20.8 (offset)

Scope 2: Indirect Greenhouse Gas Emissions (Organizational Activities)

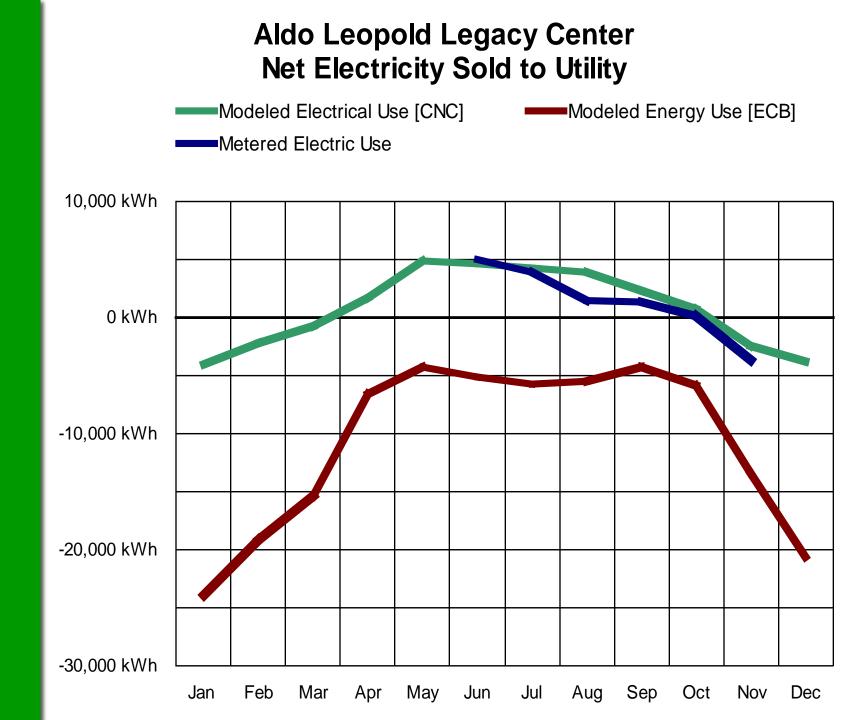
Activity	Amount	CO ₂ Emissions (metric tons)
Employee commuting	1,800 gallons of gas	16.0
Business travel	36,000 air miles	6.0
Solid waste removal	5,200 pounds	3.4
Total emissions		25.4

Forest Management & Sustainable Harvest

Before Harvest

After Harvest

Site Harvested Lumber:


The building was designed around the size and quantity of lumber that could be sustainably harvested from the Leopold Forest.

Carbon Sequestration Carbon Absorbed by Managed Forest

Managed Forest Area	Carbon Sequestration Rate	CO ₂ Emissions
35 acres	0.25 IP tons of carbon per acre	29.1 metric tons (offset)

Carbon Balance Summary

	Source	CO ₂ Emissions (metric tons)
Scope 1	Direct emissions	19.9
Scope 2	Indirect emissions: electricity	20.8 (offset)
Scope 3	Indirect emissions: organizational activities	25.4
Carbon sequestered	Managed forest	29.1 (offset)
Net carbon offset		4.6 (offset)

We end, I think, at what might be called the standard paradox of the 20th century: our tools are better than we are, and grow better faster than we do. They suffice to crack the atom, to command the tides. But they do not suffice for the oldest task in human history: to live on a piece of land without spoiling it.

Aldo Leopold, 1938