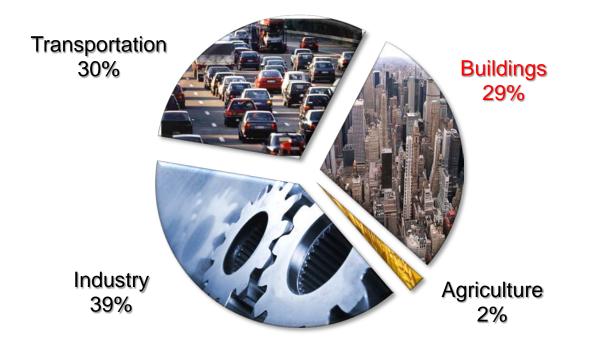
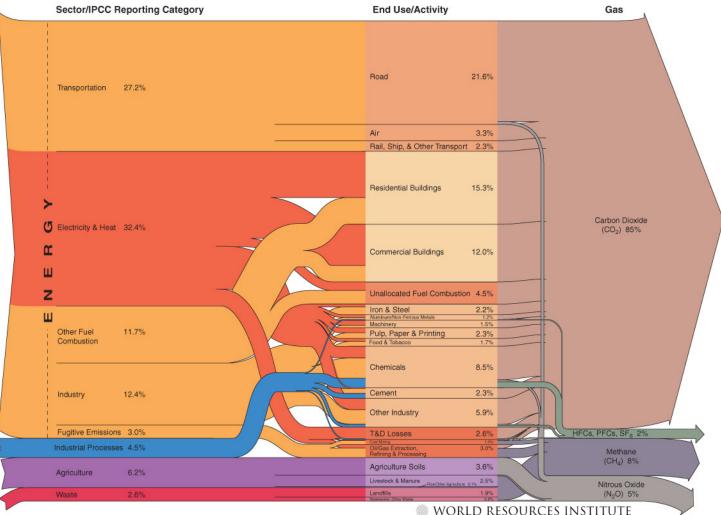


Accentuate the Positive: Climate Responsive Design

PRESENTERS: Terri Meyer Boake | University of Waterloo Mike Williams | RWDI



Developed By: aia seattle



These values look at <u>Secondary Energy Use by Sector in Canada</u> (2006) (energy used by the final consumer i.e. operating energy)

Emissions and their Sources

U.S. GHG Emissions Flow Chart

OAA ZO30 Technological advances have allowed us to build anything...

The Glass House New Canaan Connecticut 1949, by architect Phillip Johnson who coined the term "International Style"

2030² Conventional construction: Boxes hooked up to life support

OAA

In Florida turn the dial one way, in Maine turn it the other.

Think Building Green.com

CONNECTICUT

NEW MEXICO

2012

ARIZONA

- Roughly....
- **The Sun** = Free Heat, Light, Cooling & Ventilation
- The Wind = Free Ventilation & Cooling
- Rain & Snow = Free Water & Cooling
- There is lots that can and must be done at the OUTSET of a project with respect to the Climate, Building Siting and Orientation that can HELP to reduce energy.
- If not done you will spend a lot of time and energy working to correct these bad decisions.
- Good decisions at the start can be built upon
- Bad decisions at the start need to be corrected

Must Understand What Climate Responsive Design can Impact

Climate responsive design means designing to work with the local climate.

This can mean shaping massing, materials, etc. to:

Reduce snow accumulations at entrances / exits

Store coolth generated at night to the day

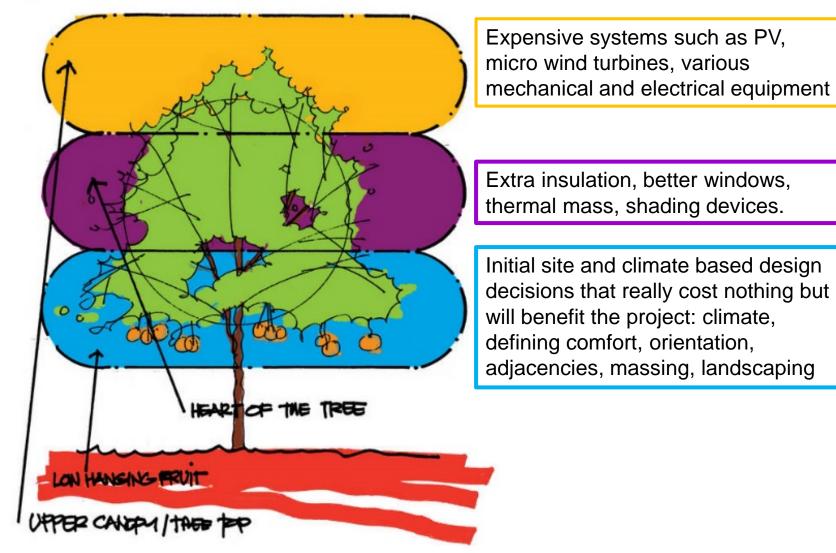
Passive solar heating

Wind driven natural ventilation

Locations of windows, atria, skylights etc. to benefit daylighting

These also impact natural ventilation

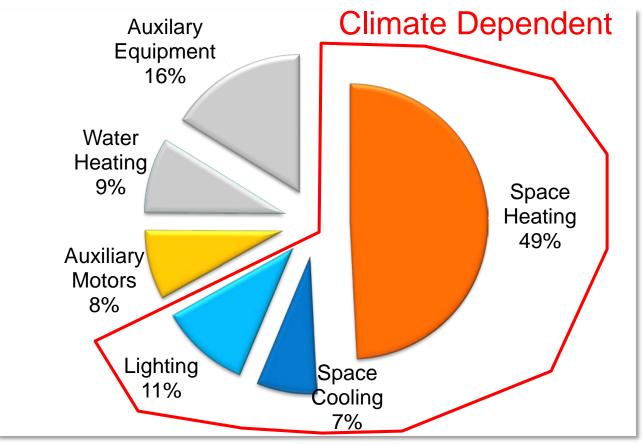
Locating pollutant/odour sources downwind from building intakes


Providing adequate snow melt run-off capacity

Burying the water pipes deep enough

Using a ground exchange system to pre-heat / pre-cool intake air

Low Hanging Fruit



www.amdgarchitects.com

Energy Use in Buildings: Operating Energy

Operating Energy of Building

80% of the problem!

Landscape + Site

Disturbance vs. sequestration

Embodied Carbon in Building Materials

People, "Use" + Transportation Renewables + Site Generation

Counting Carbon costs....

+ purchased offsets

Operating Energy of Building

80% of the problem!

Building envelope performance directly impacts operating energy

Embodied Carbon in Building Materials Building envelope material selection and sourcing directly impacts embodied energy

OPERATING ENERGY IS CLIMATE DEPENDENT

#1 - Reduce loads/demand first

(conservation, passive design, daylighting, shading, orientation, etc. with CLIMATE RESPONSIVE DESIGN)

#2 - Meet loads efficiently and effectively (energy efficient lighting, high-efficiency MEP equipment, controls, etc.)
to reduce energy requirements, in order to

#3 - **Use renewables to meet energy needs** (doing the above steps *before* will result in the need for much smaller renewable energy systems, making carbon neutrality achievable.)

Carbon Reduction: The Tier Approach

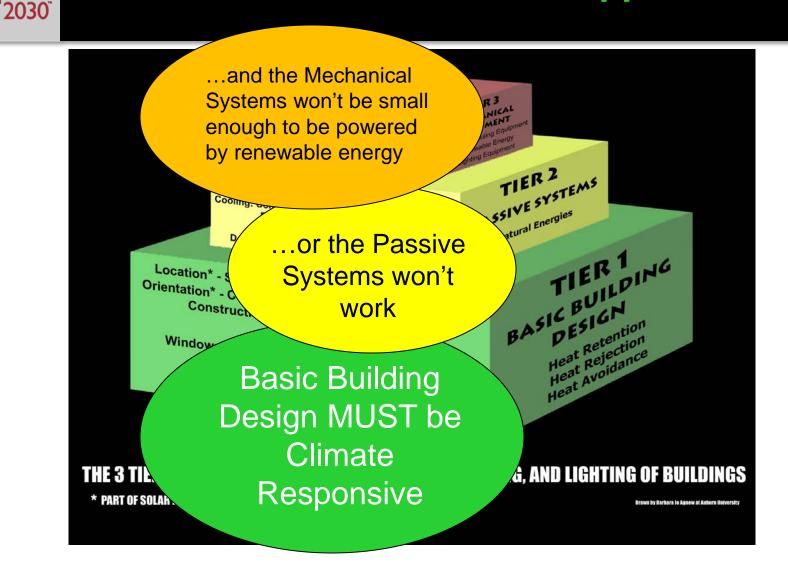
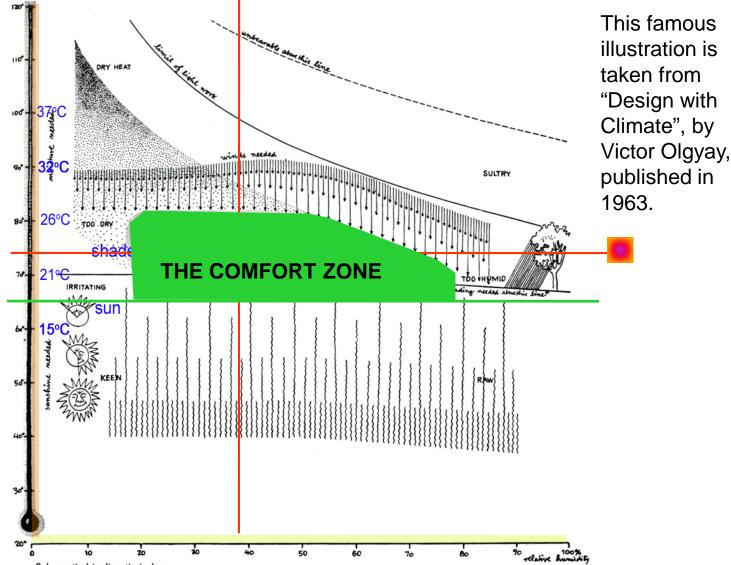


Image: Norbert Lechner, "Heating, Cooling, Lighting"


OAA

Climate as the Starting Point for a Climate Responsive Design

Designing to the Comfort Zone vs. Comfort Point:

Schematic bioclimatic index.

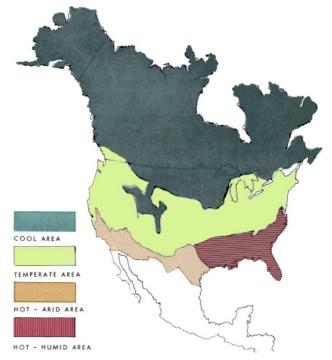
Passive Bio-climatic Design: COMFORT ZONE

IDEALLY comfort expectations may have to be reassessed to allow for the wider "zone" that is characteristic of buildings that are not exclusively controlled via mechanical systems.

Creation of new "**buffer spaces**" to make a hierarchy of comfort levels within buildings.

Require **higher occupant involvement** to adjust the building to modify the temperature and air flow.

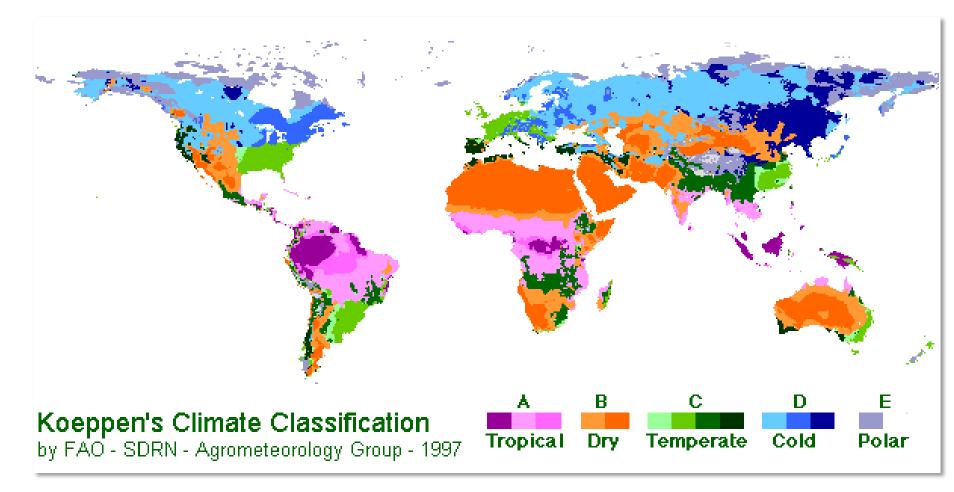
North American Bio-climatic Design:


Design must first acknowledge regional, local and microclimate impacts on the building and site.

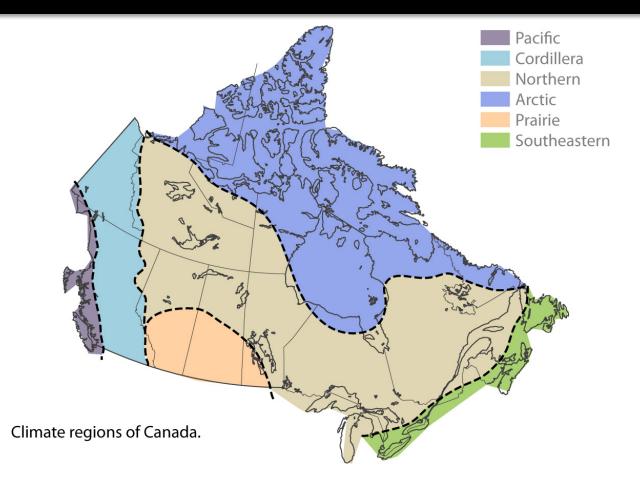
COLD

TEMPERATE

HOT-ARID

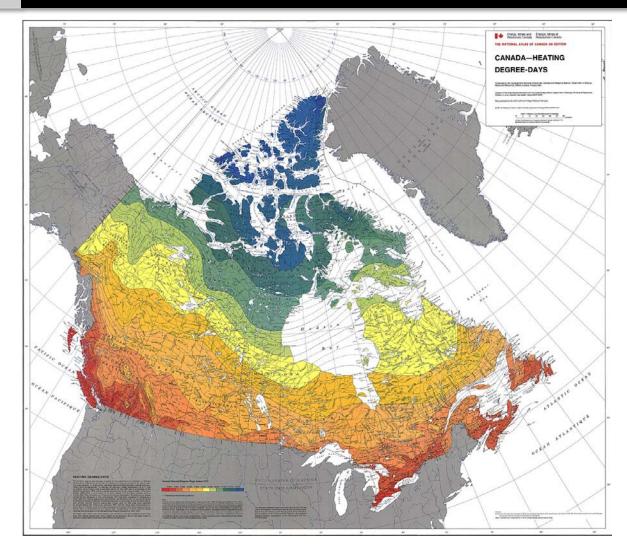

HOT-HUMID

11. Regional climate zones of the North American continent.


Design must first acknowledge regional, local and microclimate impacts on the building and site.

The climate regions of Canada

OAA


2030

Even within Canada, there exist variations in climate, enough to require very different envelope design practices and regulations. This mostly concerns insulation and water penetration, as well as humidity concerns.

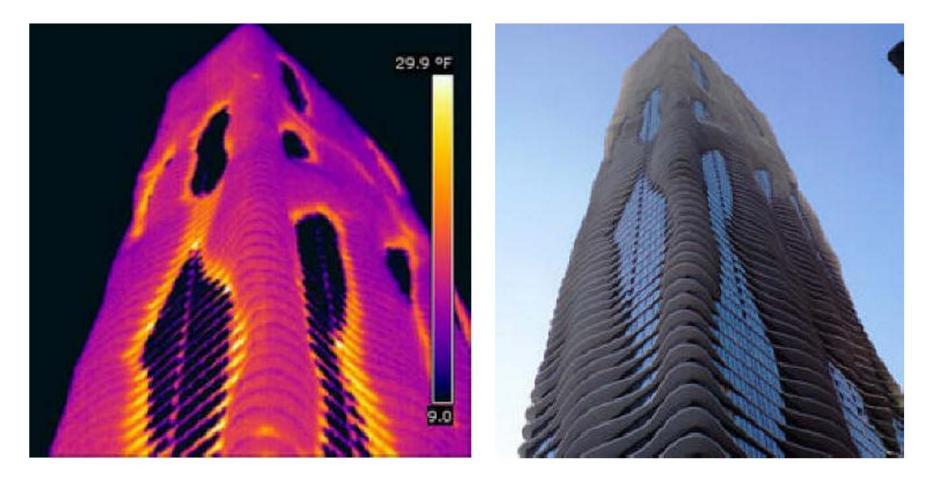
Heating and Cooling Degree Days

OAA

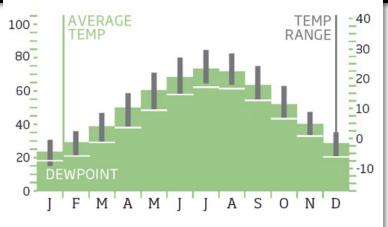
This map shows the annual sum of heating degree days (an indicator of building heating needs). Data for period 1941 to 1970.

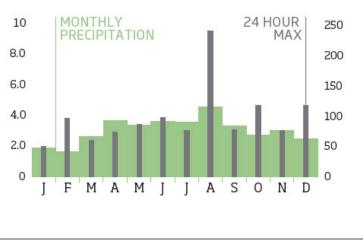
Determine if the climate is heating or cooling dominated ...this will set out your primary strategy.

The Controversial "Cover" of Greensource Magazine


A "sustainable" Chicago residential skyscraper – going for LEED

Buildings that are purporting to be "sustainable" routinely ignore key issues of detailing to achieve energy efficiency – in this building, continuous thermal bridges at every slab edge and 90% wall glazing. Not acceptable in a cold climate.


The Controversial "Cover" of Greensource Magazine

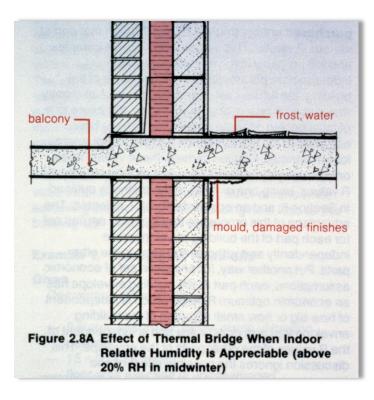


Chicago Climate Data

TEMPERATURES & DEW POINTS FAHRENHEIT/CELSIUS

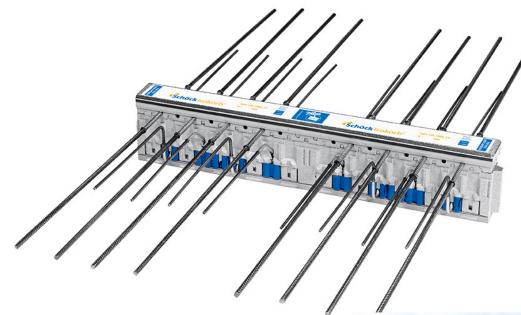
PRECIPITATION INCHES/MILLIMETERS

1 Upper Columbus Drive 2 Lower Columbus Drive 3 Stair to Harbor Park 4 Roof garden 5 Parking 6 Living/dining room 7 Den 8 Kitchen 9 Bedroom 10 Master bedroom 11 Great room 12 Dining room


1 M.

1 Upper Columbus Drive 2 Lower Columbus Drive 3 Stair to Harbor Park 4 Roof garden 5 Parking 6 Living/dining room 7 Den 8 Kitchen 9 Bedroom 10 Master bedroom 11 Great room 12 Dining room

Heating degree days 6,479 F (3,582 C) Cooling degree days 782F (417 C)


OAA 2030 Solving the thermal bridge

The "classic" bad balcony detail results in heat loss as well as moisture and mold problems.

Off the Shelf Thermal Break Products

Can work if they are not "value engineered" out of the project.

Schock Isokorb

Climate - It all starts here...

In the built environment, meteorology is the start of all design ...

Structural design / response

Pedestrian comfort

Air quality / plume dispersion

Energy demand / heating and cooling loads

etc.

Understanding Your Climate

What is Climate?

- Temperature
- Solar radiation
- Humidity
- Pressure
- Rain, snow, fog
- Visibility
- Wind speed and direction

Weather vs. Climate

Climate is a Historical Record:

- 30+ years of data
- 24+ records/day

sil

Climate Consultant

http://www.energy-design-tools.aud.ucla.edu/

Climate Consultant 5 is a free tool available from the above address.

You will need to download .epw climate data for your city from this website

http://apps1.eere.energy.gov/buildings/energyplus/cfm/weather_data.cfm

Choose Comfort Model

- Buildings are designed for their use, occupancy or occupants
- Normally it is the people that need to be comfortable in doing their tasks, not the building
- Some uses can accommodate a much higher range of temperatures than others
- Decide if using a fully automated heating AND cooling system
- Can the building **eliminate an A/C system** due to climate?
- Can the building **use passive solar to heat** the building?
- Can the building **use passive ventilation** to cool the building?
- Can the building take advantage of daylight to light the building?

California Energy Code Comfort Model (Default)

- For the purpose of sizing residential heating and cooling systems the indoor Dry Bulb Design Conditions should be between 68°F (20°C) to 75°F (23.9°C).
- No Humidity limits are specified in the Code, so 80% Relative Humidity and 66°F (18.9°C) Wet Bulb is used for the upper limit and 27°F (-2.8°C) Dew Point is used for the lower limit (but these can be changed on the Criteria screen).

YOU LIKELY WANT TO SWITCH AWAY FROM THIS DEFAULT IN A COLD CLIMATE.

ASHRAE Handbook of Comfort Fundamentals 2005

- For people dressed in normal winter clothes,
- Effective Temperatures of 68°F (20°C) to 74°F (23.3°C) (measured at 50% relative humidity), which means the temperatures decrease slightly as humidity rises.
- The upper humidity limit is 64°F (17.8°C) Wet Bulb and a lower Dew Point of 36F (2.2°C).
- If people are dressed in light weight summer clothes then this comfort zone shifts 5°F (2.8°C) warmer.

EPW Weather Data for 1000s of Locations

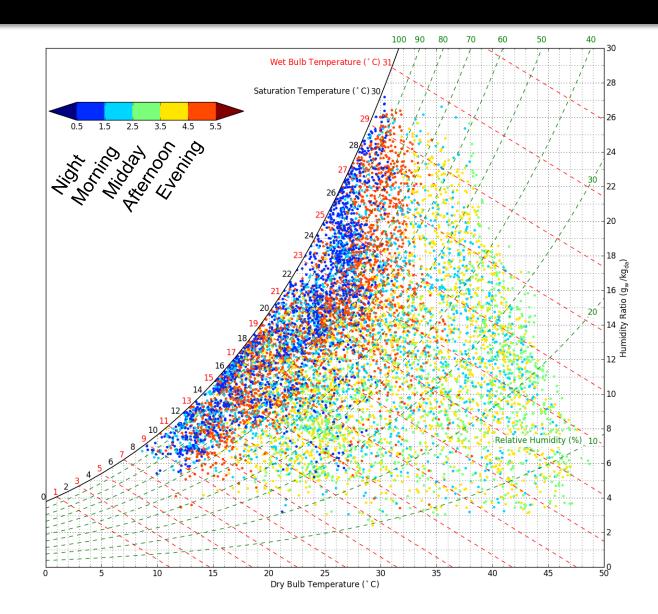
le Criteria Charts Help														
WEATHER DATA SUMMARY				LOCATION: Latitude/Longitude: Data Source:			Toronto Int'I, ON, CAN43.67° North, 79.63° West, Time Zone from Greenwich -5WYEC2-B-04714716240 WMO Station Number, Elevation 173 m							
MONTHLY MEANS	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC		
Global Horiz Radiation (Avg Hourly)	161	221	268	329	384	404	405	376	333	239	136	122	Wh/sq.m	
Direct Normal Radiation (Avg Hourly)	230	265	270	307	324	323	361	316	347	249	130	172	Wh/sq.m	
Diffuse Radiation (Avg Hourly)	85	112	127	143	172	185	164	178	141	126	86	67	Wh/sq.m	
Global Horiz Radiation (Max Hourly)	474	651	875	931	974	1003	980	907	827	655	516	417	Wh/sq.m	
Direct Normal Radiation (Max Hourly)	879	947	1022	1028	959	948	927	932	931	870	861	872	Wh/sq.m	
Diffuse Radiation (Max Hourly)	238	368	439	431	594	545	458	431	385	328	250	195	Wh/sq.m	
Global Horiz Radiation (Avg Daily Total)	1468	2262	3181	4347	5599	6138	6035	5163	4099	2568	1300	1072	Wh/sq.m	
Direct Normal Radiation (Avg Daily Total)	2097	2703	3207	4041	4728	4918	5384	4336	4251	2663	1249	1519	Wh/sq.m	
Diffuse Radiation (Avg Daily Total)	783	1151	1506	1900	2513	2818	2441	2453	1745	1358	818	591	Wh/sq.m	
Global Horiz Illumination (Avg Hourly)	18043	24998	30402	37172	43543	45839	45796	42702	37681	27169	15572	13688	lux	
Direct Normal Illumination (Avg Hourly)	22576	27019	28334	32402	34319	34073	37965	33408	36306	25747	13364	17190	lux	
Dry Bulb Temperature (Avg Monthly)	-5	-5	0	5	11	17	20	19	14	8	3	-2	degrees	
Dew Point Temperature (Avg Monthly)	-8	-9	-4	0	4	11	14	13	10	4	0	-5	degrees	
Relative Humidity (Avg Monthly)	78	75	74	70	62	68	70	70	75	77	83	79	percent	
Wind Direction (Monthly Mode)	250	270	270	90	340	0	330	340	330	250	250	250	degrees	
Wind Speed (Avg Monthly)	4	5	5	4	4	3	3	2	3	4	4	5	m/s	
Ground Temperature (Avg Monthly of 3 Depths)	0	-1	0	0	5	10	14	15	15	12	7	3	degrees (

Back Next

Setting the Project Criteria

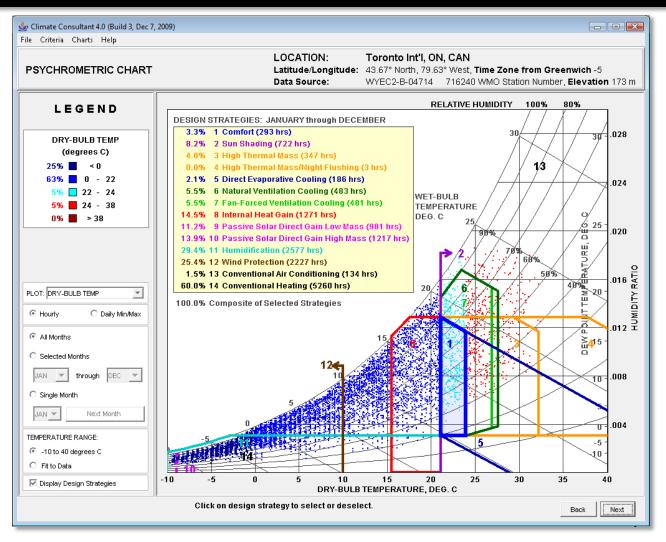
Climate Consultant 5.4 (Build 5, Mar 11, 2013) – 🗖 🗖									
ile Criteria Charts Help LOCATION CRITERIA: (Metric Units) Data Source	igitude: 43.67° North, 79.63° West, Time Zone from Greenwich -5								
Data Source ASHRAE Handbook of Fundamentals Comfort Model, 20 1. COMFORT: (using ASHRAE Handbook 2005 Model) 20.0 Comfort Low - Min, Comfort Effective Temp @ 50% RH (ET* C) 23.3 Comfort High - Max. Comfort Effective Temp @ 50% RH (ET* C) 23.3 Comfort High - Max. Comfort Effective Temp @ 50% RH (ET* C) 23.3 Comfort High - Max. Comfort Effective Temp @ 50% RH (ET* C) 23.3 Comfort High - Max. Comfort Effective Temp @ 50% RH (ET* C) 23.3 Comfort High - Max. Comfort Effective Temp @ 50% RH (ET* C) 23.4 Min. Dew Point Temperature (°C) 2.2 Min. Dew Point Temperature (°C) 2.5 Summer Comfort Zone shifted by this Temperature (ET* C) 1.0 Winter Clothing Indoors (1.0 Clo=long pants,sweater) 0.5 0.5 Summer Colothing Indoors (1.0 Clo=long pants,sweater) 0.5 Summer Clothing Indoors (.5 Clo=shorts,light top) 1.1 1.1 Activity Level Daytime (1.1 Met=sitting,reading) 20.0 Min. Dry Bulb Temperature when Need for Shading Begins (°C) 315.5 Min. Dry Bulb Temperature when Need for Shading Begins (Wh/sq.m) 3. HIGH THERMAL MASS ZONE: 8.3 8.3 Max. Dry Bulb Temperature Difference above Comfort High (°C) 2.8 Min. Nighttime Temperature Difference above Comfort High (°C) 2.8	05 (select Help for definitions) 7. NATURAL VENTILATION COOLING ZONE: 2.0 Terrain Category to modify Wind Speed (2=suburban) 0.2 Min. Indoor Velocity to Effect Indoor Comfort (m/s) 1.5 Max. Comfortable Velocity (per ASHRAE Std. 55) (m/s) 3.7 Max. Perceived Temperature Reduction (°C) 90.0 Max. Relative Humidity (%) 22.8 Max. Wet Bulb Temperature (°C) 8. FAN-FORCED VENTILATION COOLING ZONE: 0.8 Max. Mechanical Ventilation Velocity (m/s) 3.0 Max. Perceived Temperature Reduction (°C) (Min Vel, Max RH, Max WB match Natural Ventilation)								
20.0 Max. Wet Bulb set by Max. Comfort Zone Wet Bulb (°C) 11.0 Min. Wet Bulb set by Min. Comfort Zone Wet Bulb (°C) 6. TWO-STAGE EVAPORATIVE COOLING ZONE: 50.0 % Efficiency of Indirect Stage	8.5 Min. Velocity above which Wind Protection is Desirable (m/s) 11.1 Min. Dry Bulb Temperature Difference Below Comfort Low (°C) 13. HUMIDIFICATION ZONE: (directly below Comfort Zone) 14. DEHUMIDIFICATION ZONE: (directly above Comfort Zone)								

Recalculate

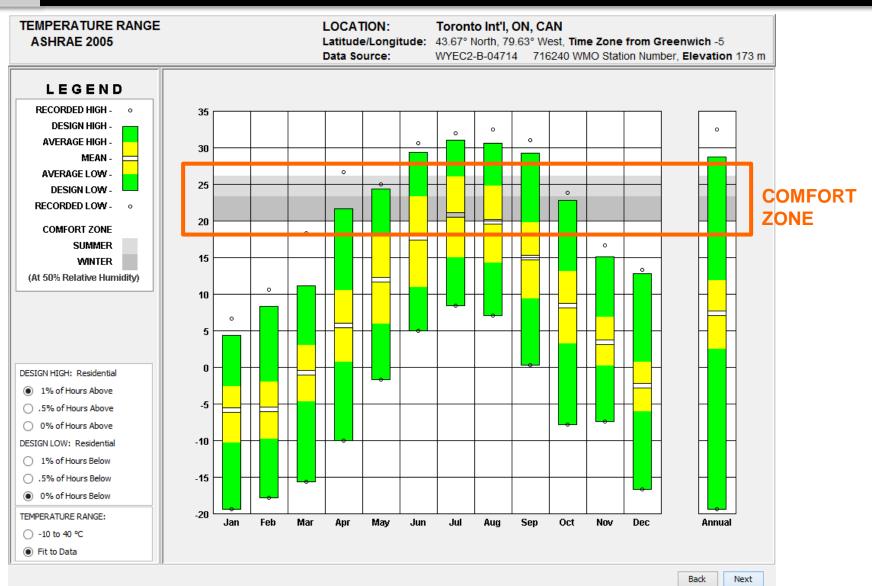

Next

Back

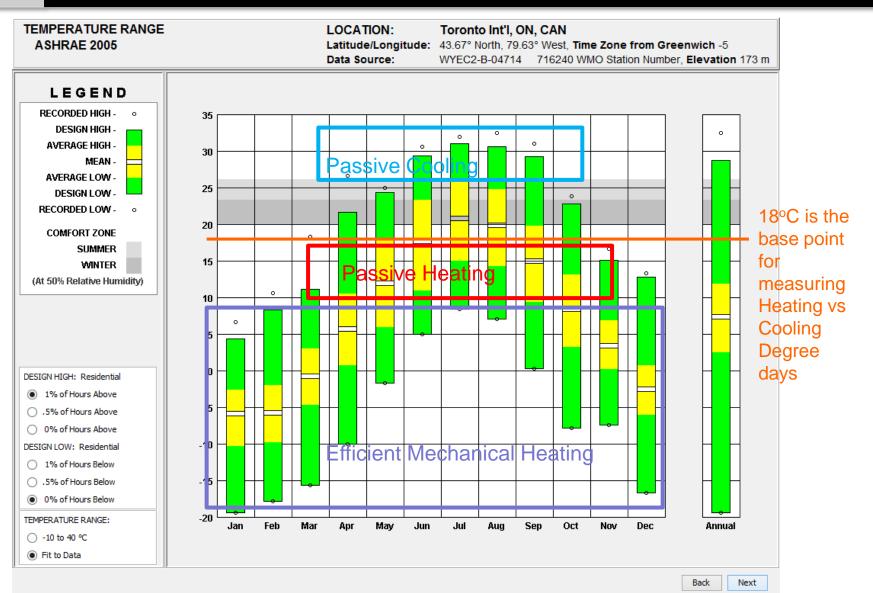
The Psychrometric Chart


OAA

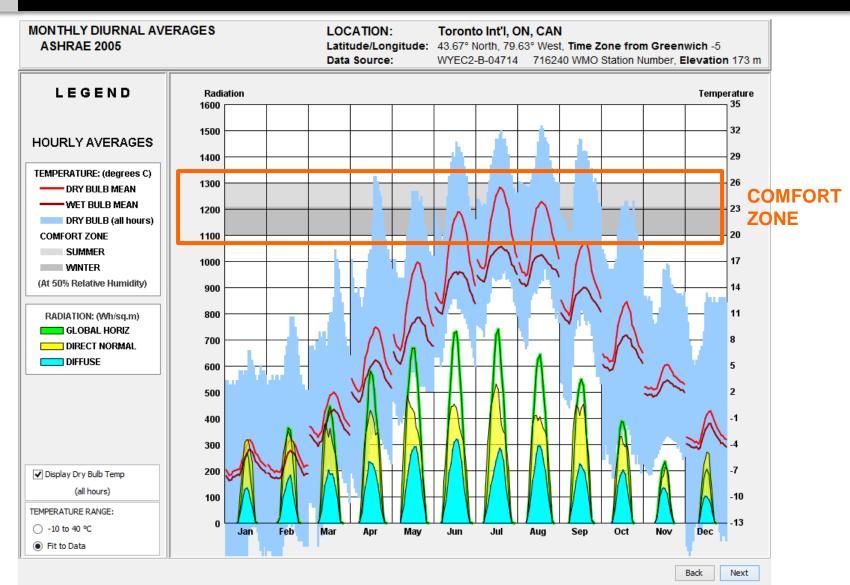
2030


Psychrometric Chart

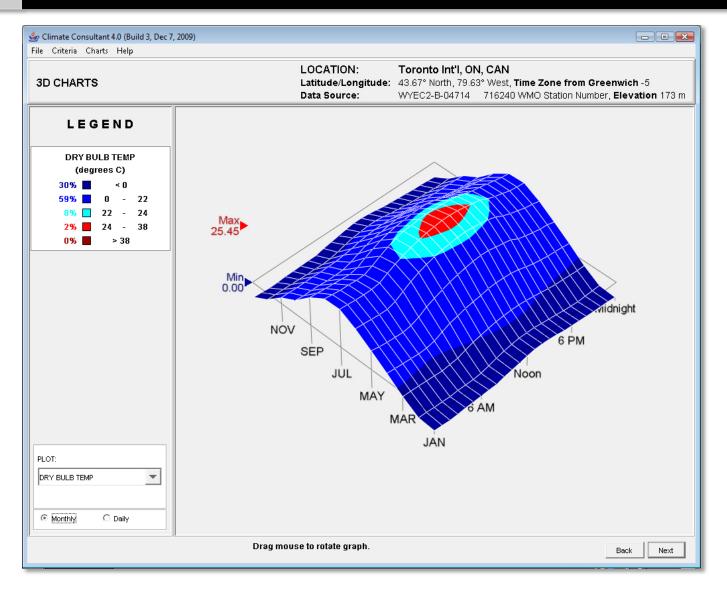
The chart helps to identify climate based strategies to achieve comfort.



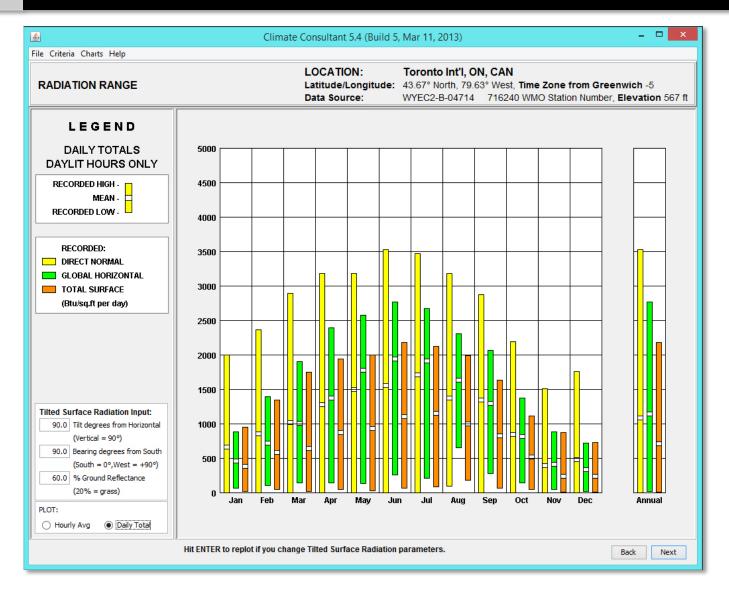
Climate Data for Toronto



Climate Data for Toronto

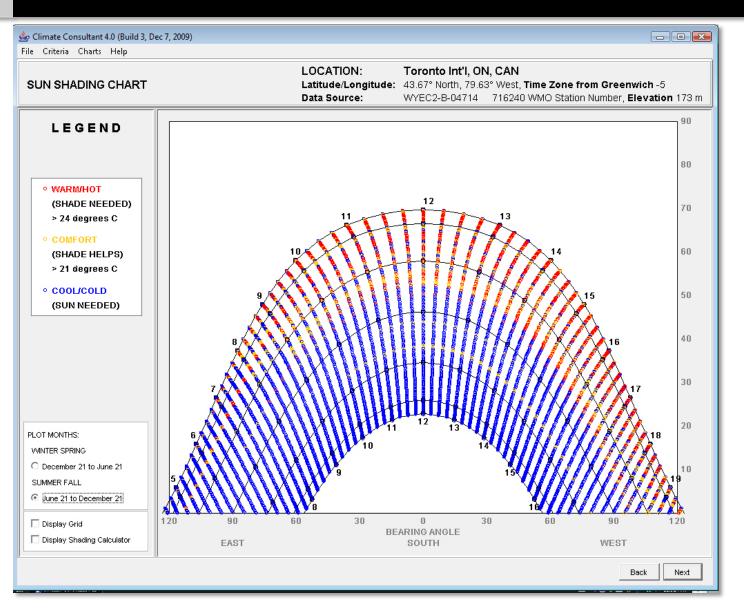


Climate Data for Toronto



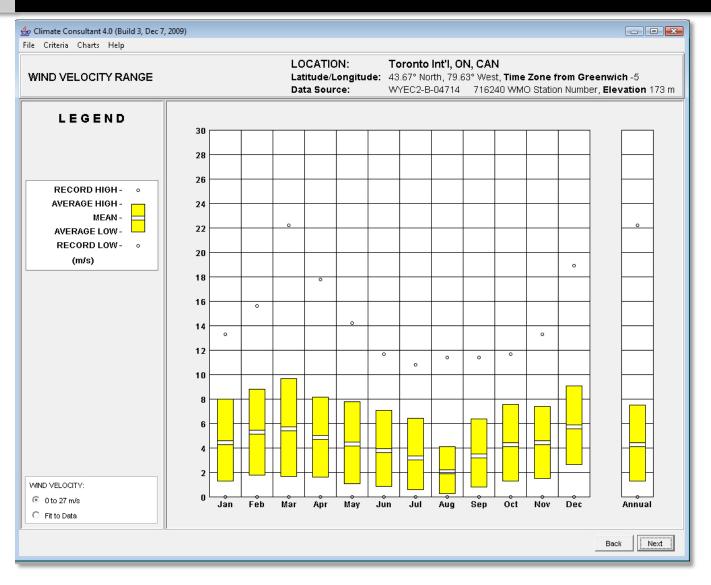
Temperature Range for Toronto

Toronto Solar Radiation Range

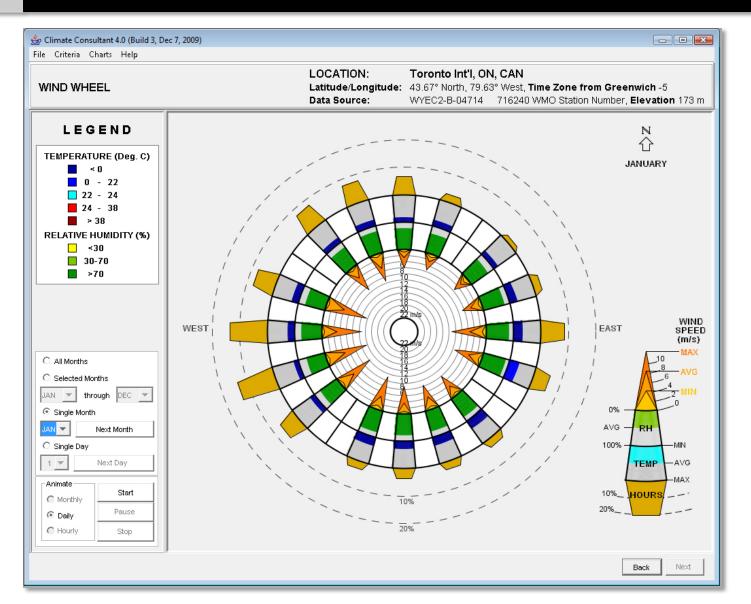


Ground Temperature for Toronto

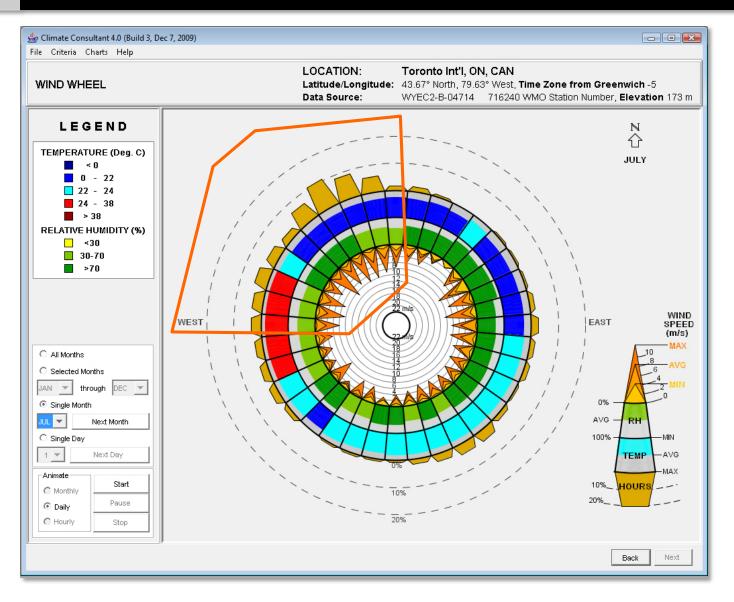
· Climate Consultant 4.0 (Build 3, D le Criteria Charts Help	ec 7, 2009)				10047	1011		T - u - u - 4	- 1		. NI			
GROUND TEMPERATURE (MONTHLY AVERAGE)				GE)	LOCATION: Latitude/Longitude: Data Source:			Toronto Int'I, ON, CAN 43.67° North, 79.63° West, Time Zone from Greenwich -5 WYEC2-B-04714 716240 WMO Station Number, Elevation 173 m						
LEGEND	40 г													
DEPTH (meters) 0.5	35 -													
2.0 4.0	25 -													
	20													
	15													
	10													
	5		-	•	1									
	-5		$\langle \langle \langle$											
EMPERATURE RANGE:	-10													
 -10 to 40 degrees C Fit to Data 		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
)													Back



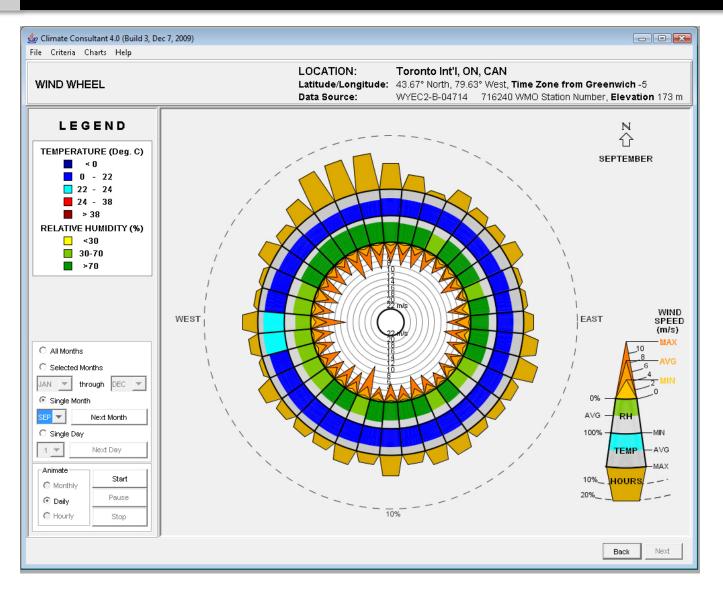
Sun Shading Chart



Wind Speed



January Wind Wheel/Rose for Toronto



July Wind Wheel/Rose for Toronto

September Wind Wheel/Rose for Toronto

