Façade Systems in Architecture: Into the Details

Arch 173: Building Construction 2

Generally the façade has evolved towards systems that are:

- Durable
- Lighter - so less mass, weight on foundations, carbon
- Higher R-values
- Made of multiple layers
- Using a rain screen/drainage plane
- External to the structural system to keep the structure at a constant temperature

The historic photographs (right) document two earlier phases in the development of glass technology. The making of crown glass, which lasted from 1825 to around 1935, involved placing molten glass on the end of a punty, spinning the glass as it cooled, detaching the glass disc from the

Glass in Architecture and Decoration, by Raymond McGrath and A.G. Frost, Architectural Press, 1961.

punty with shears, and cutting it. The flat drawing of sheet glass, a process first used in 1913, allows the fabrication of larger sheets, althoug, it creates some surface irregularitie. The float process has largely replace those earlier technologies for vision glass.

Glass in Architecture and Decoration, by Raymond
McGrath and A.G. Frost, Architectural
Press. 1961

The Properties of Glass

Types of glass and their composition

Iron present in the silica sand from which glass is made gives it the green hue. If you want extra clear glass, you need to specify low-iron glass.

Figured glass is embossed with a pattern to change its optical properties

Annealed Glass

Breaks easily, producing long, sharp splinters

Tempered Glass

Shatters completely under higher levels of impact energy, and few pieces remain in the frame

Laminated Glass

May crack under pressure, but tends to remain integral, adhering to the plastic vinyl interlayer

The kind of glass we specify depends on the position and use:

- Regular windows in houses use annealed glass
- Tempered glass is used in cars, bus shelters or entry areas where large shards would provide danger to the public
- Laminated glass is used in canopies, structurally glazed scenarios where extra strength is required (you can laminate any kind of glass)
- Heat strengthened glass is also an option
- Wired glass is used for fire resistance as well as formerly for break in resistance

The Canadian General Standards Board is set to remove wired glass from its national building standards at the end of February, saying it isn't safe "because it's not impact resistant."
"It can shatter when hit and cause lacerations," Jacqeline Jodoin, senior director of the federal organization, told The Canadian Press.

Laminated glass is the new standard for achieving break resistance.

Laminated glass uses a PVB layer between the panes to stop shattering

wor yon wd
All sorts of tests are carried out on glass that is used for high risk areas including skylights and canopies.

Glass can also be curved. There are different bending methods - cold vs hot

(Sn)

Prada

(and

(as)

Solar Transmission of Flat Glass

Type	Thickness, $\mathbf{m m}$ (in)	Solar Transmittance, \%	
Clear	$2.5-6(0.1-0.25)$	$78-87$	
Heavy-duty clear	$8-22(0.3-0.87)$	$67-74$	
Tinted	$6-12(0.25-0.5)$	$47-68$	
Heavy-duty tinted	$10-12(0.39-0.5)$	$24-33$	
Reflective	$6-12(0.25-0.5)$	$3.0-29$	
Insulating	$15-18(0.59-0.7)^{*}$	$\#$	
Solar (super clear)	$6-30(0.25-1.18)$	$90-93$	
Architectural laminated	$6-30(0.25-1.18)$	$\#$	
Spandrel	$6(0.25)$	$\&$	
Figured	$3-4(0.12-0.15)$	$78-80$	
Wired	$6(0.25)$	$78-80$	
Heat-resisting	$3-12(0.12-0.5)$	$80-92$	
*Thickness is listed total thickness, made up of lights 3 to 6 mm thick separated by a 12mm air space			
\# Transmittance of insulating and laminated glass varies widely depending on whether or not one			
or more surfaces is treated with a reflective film			
\& Spandrel glass is assumed to be back painted and insulated so no solar transmittance			

- Air-tightness
- Solar heat gains
- U-value (the lower the better)
- Reduce convective H.T. Air vs Ar vs Vacuum
- Reduce radiative H.T Soft vs hard low-e coatings
- Reduce conductive H.T. Thermal breakers
- Multi-layer IGU
- Color Rendering Index (CRI)

The spacer material that joins the layers of the IGU makes a HUGE difference as to the efficiency of the unit.

When invented aluminum spacers were normal but they result in lower temperatures at the edge of the glass.

Structural sealant type spacers are the best at this point.

Solar energy Review

	Ordinary Glass	ComfortPlus	EnergyTech Low-E	LoE ${ }^{3}-366^{\text {® }}$
	3 mm Clear Glass	$\begin{aligned} & 6.38 \mathrm{~mm} \\ & \text { ComfortPlus } \\ & \text { Clear } \end{aligned}$	Insulated Glass Unit 6 mm EnergyTech 12 mm Argon 6 mm Clear	Insulated Glass Unit $6 \mathrm{~mm} \mathrm{LoE}{ }^{3}-366^{\circledR}$ 12 mm Argon 6 mm Clear
Visible light transmittance	89\%	82\%	73\%	62\%
Reflectance exterior	8\%	10\%	16\%	11\%
Solar Heat Gain Coefficient (SHGC)) 0.85	. 68	0.61	0.27
U-Value	5.9	3.6	1.6	1.32
UV transmission (Tuv)	68\%	0.007\%	35\%	0.03\%

Spectral Curve

As this chart illustrates, when compared to compentional clear glass, Solarban solar control, low-e glases significantly limit the amownt of solar radiation that enters a building from the infrared (heat encrgy) portion of the solar spectrum. Light transmittance from the visible portion of the solar spectrum remains comparatively high.

TABLE 3-4 ${ }_{\text {T }}$ T	Typical Glazing Characteristics (center of glass)				
Type of Glazing	U-Value (R-Value)	Visible Light Transmittance	UV Light Transmittance*	Solar-Heat-Gain Coefficient	Recommended Applications
Single glazing, clear	1.0 (1.0)	90\%	71\% (85\%)	. 86	None
Double glazing, clear	. 50 (2.0)	81\%	56\% (59\%)	. 76	None
Double glazing, low-E, high-solar gain	. 35 (2.9)	75\%	47\% (51\%)	. 71	Cold climates: passive solar
Double glazing, high-solar gain, low-E, argon**	. 29 (3.4)	75\%	47\% (51\%)	. 71	Cold climates; passive solar
Double glazing, moderatesolar gain, low-E, argon	. 27 (3.7)	78\%	23\% (40\%)	. 58	Cold or mixed climates
Double glazing, spectrally selective low-E, argon***	. 25 (4.0)	71\%	16\% (33\%)	. 39	Hot or mixed climates; west-facing glass
Double glazing (1 inch) with clear Heat film	$\begin{aligned} & \hline .21 \text { to } .26 \\ & (3.8 \text { to } 4.8) \end{aligned}$	20 to 81% (varies with coating type)	<1\% (28\% to 53\%)	.14-57	Match coating to climate and design needs.

*Number in () is "damage-weighted transmittance (T-dw)," which includes the portion of visible light that
contributes to fading. Lower numbers indicate less fading.
**High-solar-gain glass uses "hard-coat" or pyrolitic coatings.

Figure 1. The annual energy cost associated with the windows is cut roughly in half by going from ordinary aluminum frame double pane windows to spectrally selective low solar gain low-e glass.

NOTE: Annual energy-performance figures were generated using RESFEN software for a typical 2,000 square feet house with 300 square feet of window area, equally distributed on all four sides, with typical shading. Costs for heating with a gas furnace and cooling by air conditioning are based on typical energy costs for each location. U-factor, SHGC, and VT are for the total window, including frame.

Low E glass coatings work by reflecting or absorbing \mathbb{R} light (heat energy). The thickness of the Low E coating and the position in the window (\#2 or \#3 surface) dictate how the window will perform.

When installed on the \#3 surface of an insulated glass unit (IG), the Low E coating will reflect IR heat from inside the room to help reduce the energy loss during the cold months, thereby reducing heating costs.

When installed on the \#2 surface of an IG unit, the Low E coating will reflect or absorb IR heat from the outside, thereby reducing solar gain and cooling costs during the warm months.

6.3 The Canadian Energy Rating (ER) System

Although CSA-A440 protects the consumer and is the minimum performance standard referenced in most building codes, the bottom line for the energy-conscious consumer is a window's Energy Rating, or ER number, based on the CSA-A440.2 Energy Performance of Windows and Other Fenestration Systems standard, which applies to all windows and sliding glass doors, and the CSA-A453.0 which applies to all swinging or entry door systems.

A window's ER rating is a measure of its overall performance, based on three factors: 1) solar heat gains; 2) heat loss through frames, spacers and glass; and 3) air leakage heat loss. A number is established in watts per square metre, which is either positive or negative, depending on heat gain or loss during the heating season. The range is wide. Fig. 31 lists the typical ER ratings for windows most commonly available.

Window Ratings	Max. Air Leakage Rate $\left(\mathbf{m}^{\mathbf{3} / \mathbf{h}) \mathbf{m}^{\mathbf{- 1}}}\right.$
A1	2.79
A2	1.65
A3	0.55
Fixed	0.25
Window Ratings	Water Leakage Test Pressure Differential (Pa)
B1	150
B2	200
B3	300
B4	400
B5	500
B6	600
B7	700
Window Ratings	Wind Load Resistance Test Pressure (kPa)
C1	1.5
C2	2.0
C3	3.0
C4	4.0
C5	5.0

Fig. 31 - Typical Energy Ratings (ER)

Window Category	Type of Spacer	Type of Glazing	Fixed Window	Operable Window
Common	Aluminum	Double	-15	-25
Moderate-cost, high-performance	Insulated	Double, low-E, argon gas	0	-8
Best high-performance commercially available	Insulated	Triple, low-E coating, krypton gas	+8	+1

	Material's Used	Resource Depletion	Mfg Emissions	Embodied Energy	Energy Used During Life	Ozone Depletion	Emissions During Life	Disposal
	Glass fiber, fesin, polystyrene insulation	low	low	med	low	low	med	med
Alum Clad Wood	Wood and aluminum	med	med	med	med	low	low	med
Vinyl	Polyvinyl chloride	high	high	med	med	low	low	med

WINDOW SELECTION CONSIDERATIONS

Window Types

Energy-efficient windows come in traditional styles.

Type	Aesthetics			Performance					Cost^{5}
	Sightlines	Finish Options	Customization Options	Energy / Thermal Performance ${ }^{2}$	Strength ${ }^{3}$	Durability \& Rot Resistant	Maintenance	$\left\lvert\, \begin{gathered} \text { Color } \\ \text { Durability } \\ 4 \end{gathered}\right.$	
Vinyl ${ }^{1}$ Extruded PVC frames	*	\star	*	$\star \star \star$	*	*ᄎ ${ }^{\text {® }}$	$\star \star \star$	*ᄎ ${ }^{\text {® }}$	\$
Fiberglass ${ }^{1}$ Frames made of a composite material of glass fibers and resin	*	* \star	*	$\star \star \star$	^ᄎ	*ᄎ ${ }^{\text {® }}$	„ᄎᄎ	*ᄎᄎ	\$
Aluminum Extruded alumimum frame	* \star	$\star \star \star$	*ᄎᄎ	$\star \star \star$ thermally broken \star non-thermally broken	«ᄎ	*ᄎᄎ	*ᄎᄎ	„ᄎ	\$
Wood-Clad Aluminum Aluminum windows with a wood trim piece attached to the exterior	* \star	$\star \star \star$	*ᄎ ${ }^{\text {a }}$	$\star \star \star$ thermally broken \star non-thermally broken	varies by wood species	\star	Requires refinishing (reseal/repaint) in future years	* \star	\$\$-\$\$\$
Wood Solid wood frames or split finish	* \star	* \star	*ᄎᄎ	$\star \star \star$	varies by wood species	*	Requires refinishing (reseal/repaint) in future years	*ᄎ	\$\$-\$\$\$
Fiberglass-Clad Wood Wood windows with a fiberglass exterior cap	* \star	* \star	* \star	$\star \star \star$	varies by wood species	*ᄎ*	*ᄎᄎ	*ᄎᄎ	\$
Alum-Clad Wood Wood windows with an aluminum extrusion cap on the exterior	* ${ }^{\text {c }}$	$\star \star \star$	*ᄎ	$\star \star \star$	varies by wood species	*ᄎ*	* \star	* \star	\$\$
Steel Steel frames made of hot or cold-rolled steel and bronze	*ᄎぇ	$\star \star \star$	*ᄎᄎ	$\star \star \star$ thermally broken \star non-thermally broken	$\star \star \star$	ᄎᄎᄎ	*ᄎ ${ }^{\text {® }}$	*ᄎ	\$\$\$\$

* Triple weather stripping offered in casement and awning frame styles.

Double weather stripping is included in all other frame styles.

Structural Glass

Structural glazing references the use of glass to provide its own support without the use of an aluminum framing system

FIGURE 14.28

A typical detail of a glass mullion in suspended glazing assembly.

The glass used for this was originally monolithic (meaning a single glass layer but quite thick - in the range of 25 mm in thickness).

Wind bracing elements placed at right angles from the vision units provided lateral stability in lieu of an aluminum frame.

Structural glazing is now used to create entirely self supporting structures.

For the most part laminated glass has replaced the use of monolithic panes as they are stronger and more break resistant.

Although the triangular structural frame is made from steel, the glass support system is all glass

Apple Store, Pudong, Shanghai

Coloured Glass Applications

Robie House, Frank Lloyd Wright, Chicago

Even a very dark tint can destroy the view

Ceramic Fritted Glass

Ceramic Fritted Glass:

- Silk screening onto glass improves solar control performance
- Can be combined with clear or tinted substrates
- Reduces glare
- Can be any pattern (cost dependent)

Chicago O'Hare International Airport

One New Change Shopping Centre London, England
Ateliers Jean Nouvel

The Branley Museum
Paris, France
Ateliers Jean Nouvel

Channel Class

What is it like to have no access to a real view?

Channel glass used for the opaque wall sections on an office building in Berlin

Polycarbonate Panels

https://danpal.com/polycarbonate-panels/

ETFE

Ethylene tetrafluoroethylene (ETFE) is a fluorine-based plastic. It was designed to have high corrosion resistance and strength over a wide temperature range. ... ETFE has a relatively high melting temperature and excellent chemical, electrical and high-energy radiation resistance properties.

Tensile Glass Support Systems

This is a very brief overview - I cover this in great detail in Arch 570 offered in 3B

- This is a frameless system of making large glazed façades
- Glass panels attached to stainless steel cables usually by spider or butterfly connectors
- Spider type connections require the pre-drilling of the corners of the glass panels

- Butterfly connectors go between the glass panels so no drilling
- Early installations used only monolithic glass but now these can use insulated glass units

Tower Bridge House, London
Richard Rogers

Glass Block

All of the schools built in the 1950s and 1960s

Lattice Pattern

Corona Pattern

Mist Pattern

Double Star Pattern

Ribbed Pattern

Well Shape Pattern

Panel Anchors

NEW CONSTRUCTION

EXISTING CONSTRUCTION

Shelves

For interior applications the weight of the glass block must be considered

DEFORMATION IN BUILDINGS

SPANDREL BEAM DEFLECTION

SPANDREL BEAM DEFLECTION

COLUMN SHORTENING

DIFFERENTIAL FOUNDATION SETTLEMENT

WIND AND EARTHQUAKE DEFORMATIONS

FIGURE 15.5
Distortions of curtain wall panels, illustrated in cross section: A. Bowing due to greater thermal expansion of the outside skin of the panels under hot summertime conditions. B. Twisting of spandrel beams due to the weight of the curtain wall.

These drawings of the north elevation of an actual high-rise building show the basis for the designer's choice of curtain-wall design loads. The irregular lines on the left-hand drawing are windpressure contours determined from wind-tunnel testing based upon the maximum wind velocity recurring during a 100 -year period. The consultant, after studying the windpressure diagram, designated three different design wind pressures. These are illustrated by the three gray tones in the right-hand drawing: area $A=73$ psf, area $B=56$ psf, and area $C=42 \mathrm{psf}$.

CURTAIN WALL

Progressive Architecture

February 1984

SEAGRAM BUILDING

AT\&T HEADQUARTERS

VERTICAL WALL SECTION

HORIZONTAL WALL SECTION

5 TYPICAL CONDITION

A typical tower floor (below) has 184 vertical mullions: 64 outside 90 degrees, 56 inside 135 degrees, 32 inside 90 degrees, and 32180 degrees (the typical detail for conventional curtain walls). The pleats are resolved into spires at the top (left) and arches at the bottom (detail plan, bottom).

CURTAIN WALL "SYSTEMS"

STICK SYSTEM - GENERAL
. Anchor
2. Vertical mullion-interlocks vertically
3. Rail installed on shear blocks
4. Spandrel backpan and panel
5. Vision lite

Snap cap

Pressure plate
Thermal break Expansion joint

Horizon rai
Vertical mullion
Shear mullion
Corner block

Figure 2.2: Stick system - general
Figure 2.3: Stick system - joinery - typical horizontal/vertical connection

(1)

Typical expansion joint assembly

A
Mullion sleeve or spigot
B Bond breaker
C Expansion / tolerance joint
D Sealant applied to completed assembly

2
2)

Figure 2.5: Unitized system - general

Spit mullion
B Ral fixing
C Predrilled holes
D Horizontal rail, often open section, incorporating screw lots

Sealant continuity hole
F Sealant applied inside horizontal ${ }^{*}$ butyl tape seals

UNITIZED SYSTEM - GENERAL

Four-way stack joint concept

A Frame lowered into position onto installed frames
B Mullion interlock
C Interlocking rail
D Mullion interlock is engaged-frame is rotated and Muwered into position

E Airseal gasket

2. Mullion
3. Prefabricated frame
4. Anchor strip

FIGURE 15.40
An exploded assembly diagram of the aluminum components for the lockstrip screw ports are screwed to the vertical
gasket curtain wall. Short clips with mullion to allow attachment of the
Install beads with $1 / 8^{\prime \prime}$ clearance at top of vertical glazing

A Exterior snap or dress cap
B Pressure plate or cap screw
C Pressure plate
D Exterior gasket or tape
E Glazing unit
F Interior gasket or tape
G Interior frametubular or split
H Thermal break
I Screw chase
J Glazing cavity
K Glazing plane / shoulder

Figure 2.12: Glazing method - exterior batten

Figure 3.1: Components and materials

Figure 2.14: Glazing method - structural silicone (SSG)

Snap caps

Custom
Standard

Figure 3.12: Snap caps

Figure 4.12: Firestopping and smoke sealing

TERMINATION AT GRADE

TERMINATION AT SOFFIT

TERMINATION AT PARAPET

Detail 8: Inside vertical corner

STICK FRAME SYSTEM SSG OUTSIDE CORNER (ALTERNATIVE I)

STICK FRAME SYSTEM SSG OUTSIDE CORNER (ALT. \#2)

Detail 11: Vertical jamb (precast concrete)

Curtain Wall Attachment Systems

Example of embedded anchor components

Curtain wall is attached to the slab edge and ONLY onto the vertical curtain wall frames to prevent glass breakage

Figure 3.3: Common anchor in many stick-erected curtain wall systems

Figure 3.4: More sophisticated anchor

Figure 3.5: Slab edge anchor

UNITIZED SYSTEM
TERMINATION AT UNDERSIDE OF CONCRETE SLAB

Curtain wall project will have integrated concepts and usually structure for allowing cleaning operations

The height of the glass divisions will be coordinated with

- the placement of the slab
- Need for vision glass
- Dropped ceilings
- Raised floors

Curtain wall can incorporate operable windows

