

- A way of making smart costeffective decisions early in the design process
- A way of getting buy-in to sustainable design strategies
- A way of defining and then delivering a design strategy that meets specific goals
- A fun, less stressful way of making "it" happen

What are the underlying values?

Trust

 The team trusts that together they can achieve the common goals goals need clear definition (rock climbing image)

Respect

 Each team member knows that everyone brings knowledge, experience and understanding of the project, design and construction

Underlying Curiosity

 A new solution will emerge when the team members explore the project's ideas together - all design teams arrive curious, without preconceived ideas, but with knowledge and experience; there is a willingness to challenge ideas..

Shared Expectations

Expectations are clearly articulated, and results shared.

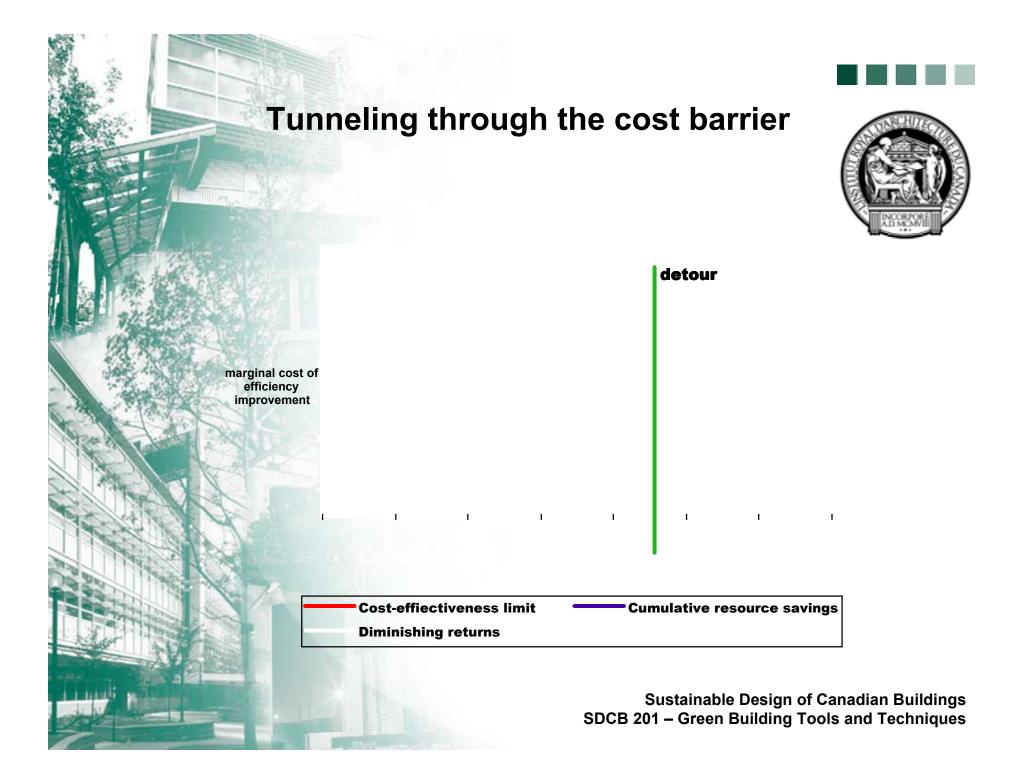
Teaching & Learning

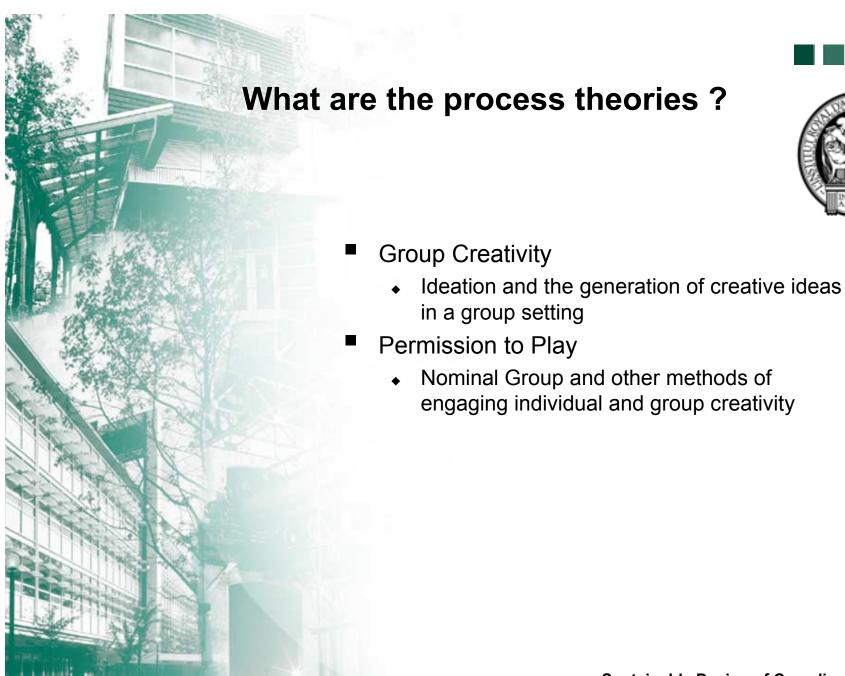
The design process is one of teaching and learning from each other.

Great Clients

- Clients enthused about being involved
- Leadership team
- User groups
- Community engagement

Good Data


- Climate/Weather
- Indoor air quality
- Site information and site selection
- Materials selection data
- Systems information
- Alternative approaches
- "in God we trust all others bring data"



Tools to work with

- LEED Framework as a checklist
 - Site
 - Water Conservation
 - Energy & Environment
 - EE4/DOE2 as energy modeling tools
 - Resource Conservation
 - · Database of existing materials availability
 - Indoor Air Quality
 - · Assessment tools
 - Innovation
 - · LEED certified professional
 - Innovation opportunities
- Other frameworks include BREAM Green Leaf and Green Globes
- Financial Modeling
 - Capital Cost projections
 - Operational Cost projections
 - Life-Cycle Costs
- Life Cycle Analysis
 - Environmental Impact of decisions
- Daylight simulation
 - Daylight modeling software
- Air flow/Ventilation analysis tools

Just new construction?

- Site Selection and orientation become primary considerations.
- Up to 15% impact in energy performance, as well as significant impact of environmental impact on land and water are determined by site selection and site orientation.
- If the design team can be involved at this stage, it makes a big difference!
- Approaches to Renovation
 - Focus salvage of significant components of the existing building
 - · reuse of existing materials
 - Focus on protection of the site...
 - Benefits of the existing site
 - What is the "tipping point " decision between new construction and renovation?? sustainable design changes it!

Integrated Design / Construction Process Phases

Pre-Design/Programming

- Vision
- Site Masterplan
- Project parameters and programmatic needs

Conceptual Design

- Space Planning Workshop
- Vision Workshop
- Building Systems Integration

Design Development

- Building Systems Workshop
 - · Sustainable Design Issues
 - LEED or other framework
- Detailed space planning sessions
- Detailed research and design development
- Initiate Energy Modeling

Construction Documents

- Document Consistency
- Integration Carries on
- Construction selection

Pre-Construction

- Partnering Workshop- CM Phase
- Partnering workshop Site Phase

Construction Phase

- Project leadership
- Quality assurance
- Close working relationship
- Monitoring of construction progress

■ Post- Construction

"De-construction" workshop

Who is involved?

- Client Team
 - Steering Committee
 - User Groups
 - Community Members
- Architects
 - Designers and Facilitators
- Electrical Engineers
- Structural Engineers
- Mechanical Engineers
- Landscape Architects
- Civil Engineers
- Other Specialists
- Builders
 - Project Managers
 - Estimators
 - Major sub-trades
 - Field team

Pre-Design/ Programming

Issues

Organizational Values **Organizational Chart**

Growth Pattern - past & future Community Values & Priorities

Time & Money

What resources are available What sources of funding are needed or in place? What is the time frame within which the project must proceed

Team Members

Architects, Client Steering Group, User Groups...

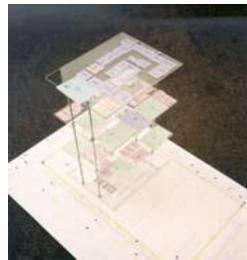
Activities & Tools

Gather background materials Interview individuals or small groups A clear understanding of the to understand issues

Conduct community consultations

Outcomes

organization's values and needs


A conceptual or feasibility report that Identifies strategic options as to alternative accommodation appproaches.

Conceptual/ Schematic Design

Issues	Team Members	Activities & Tools	Outcomes
Site Masterplan	Architects, Landscape Architects, Engineering	Spatial Relationships Workshop	LEED Checklist-Select Appropriate strategies for this project Schematic Plans
Spatial Relationships	Team, Client Steering Group, User Groups	Vision Workshop(s)	
Image & Vision			Schematic Identification of building systems
Sustainable Design opportunities & strategies	3	LEED Framework	Schematic Design Report that Identifies proposed site and building planning strategies

Time & MoneyBudget Constraints
Time Constraints

Design Development

Alternative Building systems
Building Systems Integration-
Reducing scale of mechanical
systems

Human Performance

Building Performance

Issues

Team Members

Architects, Landscape Architects, Civil, Structural, Mechanical & Electrical Engineers, Client Steering Group, **Facilities Operations** team

Activities & Tools

Structural Systems Analysis **Building Envelope Alternatives**

Lighting & Daylighting Strategies

Outcomes

Integrated Site masterplan Selection of optimal combination of Building Systems

Mechanical Systems Alternatives DOE-2 (or EE4) Energy Model/ Dylight and ventilation models Design Development Report Identifying proposed strategies and cost plan, design development drawings fopr all discuisplines

Time & Money

Capital Cost Trade-offs Life Cycle Analysis Operagtional Cost Estimates and Life-Cycle Costing

Capital Cost Plans Life Cycle Analysis Life-Cycle Costing

Construction Documents

Issues	Team Members	Activities & Tools	Outcomes
Details and Componenent Integration	Architects, Engineers,	Detailed design	
integration	Client Steering Group, Construction	Mock-ups of elements or details	Specifications that are clearly integrated
Trade-offs of performance of glazing and other elements	Managment Team if available		Clear understanding of site and builing components and assemblies
Architectural and Engineering Details		Review specifications of all disciplines and identify opportunities for refinement	Construction drawings & Specs
			Clear Details
Time & Money			Final Energy Model
Class A Estimates		Capital Cost refinement	
		Life-Cycle cost refinement	Pre-tender report

Pre-Construction Partnering

Issues	Team Members	Activities & Tools	Outcomes
Shared understanding of building systems	Architects, Engineers, Construction Management or Contractor team, all	Overview of the design decisions taken during the process	Shared Understanding of Design Concept and Building Integration Strategies.
All trades speak to design and client team.	significant sub-trades, Client Steering Group, Facilities Team	Overview of the LEED checklist & Sustainable Builiding Strategies selected for the project.	Understanding of Mechanical , Electrical, Lighting and Building Envelope trade-offs.
			Clear Lines of communication and conflict resolution strategies.
			Preparation for construction mobilization
Time & Money		Review of Capital Budget	Clear understanding of integrated building systems costs and tradeoffs

Post-Construction

Issues	Team Members	Activities & Tools	Outcomes
Lessons Learned			
(One Year later)	Architect, Engineers,	Operational Costs data review	Comparisons of design intent and
Commissioning Challenges	Field Services team,	Employee/Staff satisfaction ?	actual outcomes Post-occupancy evaluation
	Contractors, Owners, Facilities Team		Case Study Report
Time & Money			
Change Order Review		Building Performance Indicators '	? Comparison to energy and performance model

Capital and Operational Costs

analysis

LEED Completion

What do we achieve?

- Same capital costs as standard building
- Reduced operational costs
- Great environments for people
- Good indoor air quality
- Energy efficient buildings
- Quiet places
- Active environments

