

Wayne Trusty Athena Sustainable Materials Institute

Presentation Outline

- Environmental issues in perspective
- LCA definitions and terms
- LCA in practice: building industry perspective
- Cautions and concerns
- Mayo school example
- Why LCA: the proxies problem
- Concluding message

Environmental Issues in Perspective

Dominant Themes and 'Environmental' Milestones Arctic gas project rejected

Three Mile Island

resource issues

80's

the stratts on all s beautiful

60's

transportation

70's

energy

4-yoto Protocol

Sustainable Design of Canadian Buildings SDCB 201 – Green Building Tools and Techniques

environmental issues

90's

Environmental Realities

- Environmental events & decisions increasingly transnational
 - Environment is geopolitics
 - Clutter and confusion eco-methods, ecoevents, eco-orgs
 - Misinformation and speculation often push aside science
- Wrong answers may carry as much weight as correct ones

LCA can help . . .

LCA Definitions and Terms

What is LCA?

"a compilation and evaluation of the inputs, outputs and the potential environmental impacts of a product system throughout its life cycle"

International Standard ISO 14040, Reference Number ISO 14040:1997(E), p2

Oľ

a methodology for assessing the life cycle environmental performance of products and processes

A Wide Range of Embodied Effects

- Embodied effects include:
 - Resource use (raw materials,land, water, energy)
 - Emissions to air, water and land
 - Beware the common tendency to think only of embodied energy
- Energy is important, but not the whole story
- And there are embodied effects in energy itself (i.e., in making and moving energy)

LCA in Practice A Building Community Perspective

The ISO 14040 Framework ('97)

Life Cycle Inventory Analysis

Mathe Releases to environment

Impact Assessment Phase

Inventory

Impact Indicators

global warming potentialozone depletion

- acid rain
- etc.

Impact Assessment (Valuation)

THE GOAL: to measure ultimate impacts on human and ecosystem health

High Performance Building Metrics (NREL)

- Global warming potential
- Stratospheric ozone depletion
- Ground-level ozone or smog
- Nutrification/eutrophication of water bodies
- Acidification & acid deposition (dry and wet)
- Human health effects cancer and noncancer (from toxic releases to air, water, land)

A key distinction between . . .

LCA Practitioners

- Work at the level of materials & products
 - Understand LCA and the relevant unit processes
 - LCA is in their job description

Architects & Engineers

- Work at the level of the whole building
- May not understand LCA or the production processes
- Often not paid to be green

Cautions and Concerns

Quality of LCA results \leq Quality of LCI data

No matter what tool is used or how results are presented

Bear in mind that LCA . . .

- While a useful tool for businesses from both internal and external perspectives
- Is a physical accounting system with politicized protocols and conventions
- Used and sometimes misused in a highly competitive atmosphere
 - product-to-product
 - database-to-database
 - tool-to-tool

Some Specific Concerns

- Maintaining comparability among materials or products
 - consistent assumptions
 - same boundary and scope conditions
 - same level of detail
- Implications of building life cycle uncertainty, unpredictability
- Ensuring functional equivalence

Functional Equivalence . . .

- Want comparisons between functionally equivalent products, materials, etc.
- But choice of one product may dictate other choices, and
 - Different combinations can have different operating and maintenance implications

... only at the level of a complete design

Interpreting Results

- Be careful about
 - single criterion measures
 - simple or subjective scores
 - 'green labels'
- Favour a comparative framework
- Use the 'less is better' rule, but with care
- Judge significance by benchmarking

QuickTime[™] and a Photo - JPEG decompressor are needed to see this picture.

Mayo School Example

Mayo School Material & Dimensional Design

BuildingComponeti	Berchmak Design	Actual Design
Gioss Floø Area	3220 m ²	3220 m ²
Design life	80yrs	80yrs
PrimaryStructure	Single storey, traditional light	Single storey, engine eed word
	framewoodconstruction	light frame construction
Ervelope	2x6 woo st uds, 140mm	Double wood stud wall, 209mm
	fibre gass insulation	fibredpass insulation
Exteircr clading/	Wood sinplapsiding/aluminium	Wood sliplapsiding/PVC
fenestr ti on	fixedframe window, Low E'	operate frame window, Low E'
	argon	argon
Roofingsystem/	Conventional 2-ply Mod Bit	Convertional 2-ply Mod Bit
insulation	membrang 100mmXPS	membrane 250mmællulose

Why LCA? The Proxies Problem

Example Proxies in Level 3 Assessment Systems

- Recycled content
- Regional purchasing
- Rapid rotation renewables

... Tend to Confuse Ends & Means

Recycled Content

"Increase demand for building products that incorporate recycled content materials, therefore reducing impacts resulting from extraction and processing of new virgin materials."

LEEDTM2.1 Intent, MR Credits 4.1, 4.2

BUT . . .

- Recycling does not always result in reduced burdens
- Tends to weight land fill concerns over energy use, global warming, etc.
- Favours metals over other potentially more benign materials
- Greater use of metals does little to meet the intent (simply rewards business as usual practices)

SIMILARLY . . .

- Regional purchasing may or may not result in lower burdens, depending on various factors, e.g.:
 - Environmental performance of local producers
 - Source of inputs to local producers
- For short rotation renewables, have to consider:
 - Fertilizers, pesticides, herbicides
 - Harvesting and processing effects
 - Land use & soil depletion effects
 - Water use

AND . . .

- Even in the case of operating energy, we should consider:
 - Source (e.g., of electricity)
 - Type (e.g., oil vs. natural gas)
 - Pre-combustion effects (energy to make and move energy)
- Not a single LEED credit if all embodied effects cut in half for a final design compared to a benchmark
- No credit for intentional increases in embodied effects that lead to decreased life cycle effects

Concluding Message

- LCA is a powerful environmental assessment approach
- It complements life cycle costing
- The only known way to replace the sometimes misleading proxies in Level 3 assessment systems
- Its widespread application requires reliable tools for non-practitioners based on sound LCI data
- It also requires benchmarking so we know when we are losing and gaining